The limiting behaviours for the Gutman index, Schultz index, multiplicative degree-Kirchhoff index and additive degree-Kirchhoff index of a random polyphenylene chain

被引:9
|
作者
Zhang, Jinlian [1 ]
Peng, Xuhui [2 ]
Chen, Hanlin [3 ]
机构
[1] Hunan Univ Finance & Econ, Sch Math & Stat, Changsha, Peoples R China
[2] Hunan Normal Univ, Sch Math & Stat, MOE LCSM, Changsha, Hunan, Peoples R China
[3] Changsha Univ, Coll Comp Engn & Appl Math, Changsha, Peoples R China
关键词
Random polyphenylene chain; Gutman index; Schultz index; Multiplicative degree-Kirchhoff index; Additive degree-Kirchhoff index; Normal distribution; WIENER INDEXES; RESISTANCE DISTANCE; EXPECTED VALUES;
D O I
10.1016/j.dam.2021.04.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we establish the explicit analytical expressions for the variance of the Gutman index, Schultz index, multiplicative degree-Kirchhoff index and additive degree-Kirchhoff index of a random polyphenylene chain. We also prove these four indices of the random polyphenylene chain are asymptotic to normal distributions. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页码:62 / 73
页数:12
相关论文
共 50 条
  • [1] The expected values for the Schultz index, Gutman index, multiplicative degree-Kirchhoff index and additive degree-Kirchhoff index of a random polyphenylene chain
    Zhang, Leilei
    Li, Qishun
    Li, Shuchao
    Zhang, Minjie
    [J]. DISCRETE APPLIED MATHEMATICS, 2020, 282 : 243 - 256
  • [2] Multiplicative Degree-Kirchhoff Index of Random Polyphenyl Chains
    Li, Meilian
    Xie, Jinshan
    Lian, Dezhong
    Yang, Cheng-Fu
    [J]. SENSORS AND MATERIALS, 2021, 33 (08) : 2629 - 2638
  • [3] Revisiting Bounds for the Multiplicative Degree-Kirchhoff Index
    Bianchi, Monica
    Cornaro, Alessandra
    Palacios, Jose Luis
    Renom, Jose Miguel
    Torriero, Anna
    [J]. MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2016, 75 (01) : 227 - 231
  • [4] Some Results on Kirchhoff Index and Degree-Kirchhoff Index
    Huang, Shaobin
    Zhou, Jiang
    Bu, Changjiang
    [J]. MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2016, 75 (01) : 207 - 222
  • [5] The Extremal Cacti on Multiplicative Degree-Kirchhoff Index
    He, Fangguo
    Zhu, Zhongxun
    [J]. MATHEMATICS, 2019, 7 (01):
  • [6] Enumeration of the Multiplicative Degree-Kirchhoff Index in the Random Polygonal Chains
    Zhu, Wanlin
    Geng, Xianya
    [J]. MOLECULES, 2022, 27 (17):
  • [7] Enumeration of the Additive Degree-Kirchhoff Index in the Random Polygonal Chains
    Geng, Xianya
    Zhu, Wanlin
    [J]. AXIOMS, 2022, 11 (08)
  • [8] A New Lower Bound for the Multiplicative Degree-Kirchhoff Index
    Palacios, Jose Luis
    [J]. MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2016, 76 (01) : 251 - 254
  • [9] Expected Value of Multiplicative Degree-Kirchhoff Index in Random Polygonal Chains
    Liu, Xinmei
    Liang, Xinfeng
    Geng, Xianya
    [J]. MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (01) : 707 - 719
  • [10] Another Look at the Degree-Kirchhoff Index
    Luis Palacios, Jose
    Miguel Renom, Jose
    [J]. INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2011, 111 (14) : 3453 - 3455