Dynamics of Dengue epidemics when using optimal control

被引:47
|
作者
Rodrigues, Helena Sofia [2 ]
Monteiro, M. Teresa T. [3 ]
Torres, Delfim F. M. [1 ]
机构
[1] Univ Aveiro, Dept Math, P-3810193 Aveiro, Portugal
[2] Viana do Castelo Polytech Inst, Sch Business Studies, P-4900347 Viana Do Castelo, Portugal
[3] Univ Minho, Dept Prod & Syst, P-4710057 Braga, Portugal
关键词
Optimal control; Dengue; Nonlinear programming;
D O I
10.1016/j.mcm.2010.06.034
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present an application of optimal control theory to Dengue epidemics. This epidemiologic disease is important in tropical countries due to the growing number of infected individuals. The dynamic model is described by a set of nonlinear ordinary differential equations, that depend on the dynamics of the Dengue mosquito, the number of infected individuals, and people's motivation to combat the mosquito. The cost functional depends not only on the costs of medical treatment of the infected people but also on the costs related to educational and sanitation campaigns. Two approaches for solving the problem are considered: one using optimal control theory, the other carried out by first discretizing the problem and then solving it with nonlinear programming. The results obtained with OC-ODE and IPOPT solvers are given and discussed. We observe that with current computational tools it is easy to obtain, in an efficient way, better solutions to Dengue problems, leading to a decrease in the number of infected mosquitoes and individuals in less time and with lower costs. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1667 / 1673
页数:7
相关论文
共 50 条
  • [1] Optimal and sub-optimal control in Dengue epidemics
    Caetano, MAL
    Yoneyama, T
    OPTIMAL CONTROL APPLICATIONS & METHODS, 2001, 22 (02): : 63 - 73
  • [2] Stochastic dynamics of dengue epidemics
    de Souza, David R.
    Tome, Tania
    Pinho, Suani T. R.
    Barreto, Florisneide R.
    de Oliveira, Mario J.
    PHYSICAL REVIEW E, 2013, 87 (01)
  • [3] Analyzing nonlinear dynamics of dengue epidemics: A fractional order model with alert state and optimal control strategies
    Balakumar, Abilasha
    Muthukumar, Sumathi
    Chinnadurai, Veeramani
    OPTIMAL CONTROL APPLICATIONS & METHODS, 2024, 45 (04): : 1404 - 1432
  • [4] Optimal Control Strategies for Dengue Dynamics
    Siddik, Sarinah Banu Mohamed
    Abdullah, Farah Aini
    PROCEEDING OF THE 25TH NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM25): MATHEMATICAL SCIENCES AS THE CORE OF INTELLECTUAL EXCELLENCE, 2018, 1974
  • [5] Transmission dynamics and optimal control of measles epidemics
    Pang, Liuyong
    Ruan, Shigui
    Liu, Sanhong
    Zhao, Zhong
    Zhang, Xinan
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 256 : 131 - 147
  • [6] Modelling the dynamics of dengue real epidemics
    Pinho, S. T. R.
    Ferreira, C. P.
    Esteva, L.
    Barreto, F. R.
    Morato e Silva, V. C.
    Teixeira, M. G. L.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2010, 368 (1933): : 5679 - 5693
  • [7] Dynamics of dengue epidemics in urban contexts
    Pongsumpun, P.
    Lopez, D. Garcia
    Favier, C.
    Torres, L.
    Llosa, J.
    Dubois, M. A.
    TROPICAL MEDICINE & INTERNATIONAL HEALTH, 2008, 13 (09) : 1180 - 1187
  • [8] Insecticide Control in a Dengue Epidemics Model
    Rodrigues, Helena Sofia
    Monteiro, M. Teresa T.
    Torres, Delfim F. M.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS I-III, 2010, 1281 : 979 - 982
  • [9] Spatiotemporal Dynamics of Dengue Epidemics, Southern Vietnam
    Hoang Quoc Cuong
    Nguyen Thanh Vu
    Cazelles, Bernard
    Boni, Maciej F.
    Thai, Khoa T. D.
    Rabaa, Maia A.
    Luong Chan Quang
    Simmons, Cameron P.
    Tran Ngoc Huu
    Anders, Katherine L.
    EMERGING INFECTIOUS DISEASES, 2013, 19 (06) : 945 - 953
  • [10] Prevention and control of escalating dengue epidemics in Pakistan
    Rana, Muhammad Suleman
    Alam, Muhammad Masroor
    Salman, Muhammad
    Ikram, Aamer
    JOURNAL OF MEDICAL VIROLOGY, 2020, 92 (08) : 927 - 928