Integration of Precision Farming Data and Spatial Statistical Modelling to Interpret Field-Scale Maize Productivity

被引:12
|
作者
Jiang, Guopeng [1 ]
Grafton, Miles [1 ]
Pearson, Diane [1 ]
Bretherton, Mike [1 ]
Holmes, Allister [2 ]
机构
[1] Massey Univ, Sch Agr & Environm, Palmerston North 4410, New Zealand
[2] Fdn Arable Res, Christchurch 8441, New Zealand
来源
AGRICULTURE-BASEL | 2019年 / 9卷 / 11期
关键词
data fusion; precision agriculture; arable; satellite imagery; SOIL ELECTRICAL-CONDUCTIVITY; ORGANIC-MATTER; YIELD; TOPOGRAPHY;
D O I
10.3390/agriculture9110237
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Spatial variability in soil, crop, and topographic features, combined with temporal variability between seasons can result in variable annual yield patterns within a paddock. The complexity of interactions between yield-limiting factors such as soil nutrients and soil water require specialist statistical processing to be able to quantify variability, and thus inform crop management practices. This study uses multiple linear regression models, Cubist regression and feed-forward neural networks to predict spatial maize-grain (Zea mays) yield at two sites in the Waikato Region, New Zealand. The variables considered were: crop reflectance data from satellite imagery, soil electrical conductivity, soil organic matter, elevation, rainfall, temperature, solar radiation, and seeding density. This exercise explores methods which may be useful in predicting yield from proximal and remote sensed data with higher resolution than traditional low spatial resolution point sampling using soil testing and yield response curves.
引用
收藏
页数:22
相关论文
共 17 条
  • [1] Evaluation of sensor-based field-scale spatial application of granular N to maize
    E. Evangelou
    S. Stamatiadis
    J. S. Schepers
    A. Glampedakis
    M. Glampedakis
    N. Dercas
    C. Tsadilas
    T. Nikoli
    Precision Agriculture, 2020, 21 : 1008 - 1026
  • [2] Evaluation of sensor-based field-scale spatial application of granular N to maize
    Evangelou, E.
    Stamatiadis, S.
    Schepers, J. S.
    Glampedakis, A.
    Glampedakis, M.
    Dercas, N.
    Tsadilas, C.
    Nikoli, T.
    PRECISION AGRICULTURE, 2020, 21 (05) : 1008 - 1026
  • [3] An agrogeophysical modelling framework for the detection of soil compaction spatial variability due to grazing using field-scale electromagnetic induction data
    Romero-Ruiz, Alejandro
    O'Leary, Dave
    Daly, Eve
    Tuohy, Patrick
    Milne, Alice
    Coleman, Kevin
    Whitmore, Andrew P.
    SOIL USE AND MANAGEMENT, 2024, 40 (02)
  • [4] Integration of hard and soft data to characterize field-scale hydraulic properties for flow and transport studies
    Segal, Eran
    Bradford, Scott A.
    Shouse, Pete
    Lazarovitch, Naftali
    Corwin, Dennis
    VADOSE ZONE JOURNAL, 2008, 7 (03) : 878 - 889
  • [5] Coupling water and carbon processes to estimate field-scale maize evapotranspiration with Sentinel-2 data
    Ma, Zonghan
    Wu, Bingfang
    Yan, Nana
    Zhu, Weiwei
    Xu, Jiaming
    AGRICULTURAL AND FOREST METEOROLOGY, 2021, 306
  • [6] Field-scale digital soil mapping of clay: Combining different proximal sensed data and comparing various statistical models
    Arshad, Maryem
    Li, Nan
    Di Bella, Lawrence
    Triantafilis, John
    SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 2020, 84 (02) : 314 - 330
  • [7] A Field-Scale Sensor Network Data Set for Monitoring and Modeling the Spatial and Temporal Variation of Soil Water Content in a Dryland Agricultural Field
    Gasch, C. K.
    Brown, D. J.
    Campbell, C. S.
    Cobos, D. R.
    Brooks, E. S.
    Chahal, M.
    Poggio, M.
    WATER RESOURCES RESEARCH, 2017, 53 (12) : 10878 - 10887
  • [8] A comparison of travel-time and amplitude matching for field-scale production-data integration: Sensitivity, nonlinearity, and practical implications
    Cheng, H
    Datta-Gupta, A
    He, Z
    SPE JOURNAL, 2005, 10 (01): : 75 - 90
  • [9] Compaction and Fluid-Rock Interaction in Chalk Insight from Modelling and Data at Pore-, Core-, and Field-Scale
    Minde, Mona Wetrhus
    Hiorth, Aksel
    GEOSCIENCES, 2020, 10 (01)
  • [10] Agricultural erosion modelling: Evaluating USLE and WEPP field-scale erosion estimates using UAV time-series data
    Meinen, Benjamin U.
    Robinson, Derek T.
    ENVIRONMENTAL MODELLING & SOFTWARE, 2021, 137