Peroxymonosulfate activation by immobilized CoFe2O4 network for the degradation of sulfamethoxazole

被引:10
|
作者
Zhu, Xiurong [1 ]
Ge, Lei [2 ]
Yan, Wei [1 ]
Yang, Shengjiong [2 ]
Wang, Gen [2 ]
Miao, Delu [3 ]
Jin, Pengkang [4 ]
机构
[1] Xi An Jiao Tong Univ, Dept Environm Sci & Engn, Xi'an 710049, Shaanxi, Peoples R China
[2] Xian Univ Architecture & Technol, Sch Environm & Municipal Engn, Shaanxi Key Lab Environm Engn, Xi'an 710055, Shaanxi, Peoples R China
[3] Chinese Acad Sci, Inst Proc Engn, CAS Key Lab Green Proc & Engn, State Key Lab Biochem Engn, Beijing 100190, Peoples R China
[4] Xi An Jiao Tong Univ, Sch Human Settlements & Civil Engn, Xi'an 710049, Shaanxi, Peoples R China
来源
基金
国家重点研发计划;
关键词
Advanced oxidation process; Sulfamethoxazole; Network-like structure; Reactive oxygen species; Immobilized CoFe2O4; METAL-ORGANIC FRAMEWORKS; HETEROGENEOUS CATALYSTS; RATE CONSTANTS; BISPHENOL-A; OXIDATION; EFFICIENCY; RADICALS; SULFAMETHAZINE; ATTENUATION; KINETICS;
D O I
10.1016/j.jece.2022.107781
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Heterogeneous activation of peroxymonosulfate (PMS) has been frequently proposed for the degradation of organic pollutants via the generation of reactive oxygen species (ROS). Spinel ferrite such as CoFe2O4 shows great advantage for PMS activation but suffers from aggregation problem and lack of microstructure. Herein, network-like CoFe(2)O(4 )immobilized on volcanic rock was synthesized for PMS activation for degrading sulfa-methoxazole (SMX). The immobilized CoFe2O4 network exhibited good catalytic performance for SMX removal. Systematic investigations, including in situ ATR-FTIR and Raman spectroscopy analysis, chemical quenching experiments and electron paramagnetic resonance (EPR) tests, revealed that a redox cycle of Co2+/Co3+ induced the generation of ROS (SO4 center dot-, OH center dot & nbsp; and O-1(2)) that participated in the degradation of SMX. Background constituents (e.g., inorganic ions and natural organic matters) exhibited limited influence on SMX removal. A continuous flow-through reaction in a fixed-bed column revealed the immobilized CoFe(2)O(4 )network could efficient degrade SMX with long-term durability, which therefore can be a promising catalyst for PMS activation for the degra-dation of SMX.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Preparation of CoFe2O4 and its peroxymonosulfate activation for degradation of sulfamethoxazole
    Li, Yinghao
    Zheng, Xiangqian
    Gao, Xiaoya
    Zhu, Wenjie
    Luo, Yongming
    Lu, Jichang
    Jingxi Huagong/Fine Chemicals, 2022, 39 (05): : 1020 - 1027
  • [2] Efficient peroxymonosulfate activation by magnetic CoFe2O4 nanoparticle immobilized on biochar toward sulfamethoxazole degradation: Performance, mechanism and pathway
    Xiong, Minghui
    Sun, Ya
    Chai, Bo
    Fan, Guozhi
    Song, Guangsen
    APPLIED SURFACE SCIENCE, 2023, 615
  • [3] Efficient heterogeneous activation of peroxymonosulfate by Ag-doped CoFe2O4 nanoparticles for sulfamethoxazole degradation
    Lv, Xinyuan
    Yu, Miao
    Guo, Yali
    Sui, Minghao
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2023, 11 (05):
  • [4] Catalytic degradation of sulfamethoxazole through peroxymonosulfate activated with expanded graphite loaded CoFe2O4 particles
    Xu, Mengjuan
    Li, Jun
    Yan, Yan
    Zhao, Xiuge
    Yan, Jianfei
    Zhang, Yunhong
    Lai, Bo
    Chen, Xi
    Song, Liping
    CHEMICAL ENGINEERING JOURNAL, 2019, 369 : 403 - 413
  • [5] Highly efficient degradation of sulfamethoxazole (SMX) by activating peroxymonosulfate (PMS) with CoFe2O4 in a wide pH range
    Li, Yinghao
    Zhu, Wenjie
    Guo, Qian
    Wang, Xi
    Zhang, Liming
    Gao, Xiaoya
    Luo, Yongming
    SEPARATION AND PURIFICATION TECHNOLOGY, 2021, 276
  • [6] Magnetic CoFe2O4 nanoparticles supported on titanate nanotubes (CoFe2O4/TNTs) as a novel heterogeneous catalyst for peroxymonosulfate activation and degradation of organic pollutants
    Du, Yunchen
    Ma, Wenjie
    Liu, Pingxin
    Zou, Bohua
    Ma, Jun
    JOURNAL OF HAZARDOUS MATERIALS, 2016, 308 : 58 - 66
  • [7] Magnetic CoFe2O4 ferrite for peroxymonosulfate activation for disinfection of wastewater
    Rodriguez-Chueca, J.
    Barahona-Garcia, E.
    Blanco-Gutierrez, V.
    Isidoro-Garcia, L.
    Dos Santos-Garcia, A. J.
    CHEMICAL ENGINEERING JOURNAL, 2020, 398
  • [8] Magnetic CoFe2O4 nanoparticles supported on graphene oxide (CoFe2O4/GO) with high catalytic activity for peroxymonosulfate activation and degradation of rhodamine B
    Tabit, Rida
    Amadine, Othmane
    Essamlali, Younes
    Danoun, Karim
    Rhihil, Abdallah
    Zahouily, Mohamed
    RSC ADVANCES, 2018, 8 (03): : 1351 - 1360
  • [9] Activation of peroxymonosulfate by CoFe2O4 loaded on metal-organic framework for the degradation of organic dye
    Zhang, Ke
    Sun, Dedong
    Ma, Chun
    Wang, Guanlong
    Dong, Xiaoli
    Zhang, Xinxin
    CHEMOSPHERE, 2020, 241
  • [10] Magnetic EDTA functionalized CoFe2O4 nanoparticles (EDTA-CoFe2O4) as a novel catalyst for peroxymonosulfate activation and degradation of Orange G
    Lin Deng
    Zhou Shi
    Zhiyan Zou
    Shiqing Zhou
    Environmental Science and Pollution Research, 2017, 24 : 11536 - 11548