Noncommutative gerbes and deformation quantization

被引:7
|
作者
Aschieri, Paolo [1 ,2 ]
Bakovic, Igor [3 ]
Jurco, Branislav [4 ]
Schupp, Peter [5 ]
机构
[1] Fac Sci MFN, Dipartimento Sci & Tecnol Avanzate, Viale T Michel 11, I-15121 Alessandria, Italy
[2] Ist Nazl Fis Nucl, Sez Torino, Grp Coll Alessandria, Turin, Italy
[3] Univ Split, Fac Nat Sci & Math, Dept Math, Split 21000, Croatia
[4] Max Planck Inst Math, D-53111 Bonn, Germany
[5] Jacobs Univ Bremen, Ctr Math Modeling & Comp, D-28759 Bremen, Germany
关键词
Noncommutative geometry; Deformation quantization; Gerbes; Twisted Poisson structures; GAUGE-THEORY; K-THEORY; BUNDLE;
D O I
10.1016/j.geomphys.2010.06.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We define noncommutative gerbes using the language of star products. Quantized twisted Poisson structures are discussed as an explicit realization in the sense of deformation quantization. Our motivation is the noncommutative description of D-branes in the presence of topologically non-trivial background fields. (c) 2010 Published by Elsevier B.V.
引用
收藏
页码:1754 / 1761
页数:8
相关论文
共 50 条
  • [1] Deformation quantization of gerbes
    Bressler, Paul
    Gorokhovsky, Alexander
    Nest, Ryszard
    Tsygan, Boris
    ADVANCES IN MATHEMATICS, 2007, 214 (01) : 230 - 266
  • [2] Deformation quantization and noncommutative black holes
    ZHANG Xiao Institute of Mathematics
    Science China(Mathematics), 2011, 54 (11) : 2501 - 2508
  • [3] Deformation quantization and noncommutative black holes
    Xiao Zhang
    Science China Mathematics, 2011, 54 : 2501 - 2508
  • [4] Deformation quantization and noncommutative black holes
    Zhang Xiao
    SCIENCE CHINA-MATHEMATICS, 2011, 54 (11) : 2501 - 2508
  • [5] Deformation quantization of noncommutative quantum mechanics
    Jing, SC
    Zuo, F
    Heng, TH
    JOURNAL OF HIGH ENERGY PHYSICS, 2004, (10):
  • [6] Noncommutative gauge theories from deformation quantization
    Asakawa, T
    Kishimoto, I
    NUCLEAR PHYSICS B, 2000, 591 (03) : 611 - 635
  • [7] A deformation quantization theory for noncommutative quantum mechanics
    Dias, Nuno Costa
    de Gosson, Maurice
    Luef, Franz
    Prata, Joao Nuno
    JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (07)
  • [8] Deformation quantization of noncommutative quantum mechanics and dissipation
    Bastos, C.
    Bertolami, O.
    Dias, N. C.
    Prata, J. N.
    THIRD INTERNATIONAL WORKSHOP DICE2006 - QUANTUM MECHANICS BETWEEN DECOHERENCE AND DETERMINISM: NEW ASPECTS FROM PARTICLE PHYSICS TO COSMOLOGY - CONTRIBUTED PAPERS, 2007, 67
  • [9] Noncommutative line bundles and gerbes
    Jurco, B
    QUANTUM FIELD THEORY AND NONCOMMUTATIVE GEOMETRY, 2005, 662 : 193 - +
  • [10] Homological mirror symmetry, deformation quantization and noncommutative geometry
    Bressler, P
    Soibelman, Y
    JOURNAL OF MATHEMATICAL PHYSICS, 2004, 45 (10) : 3972 - 3982