Multi-geometric Sparse Subspace Clustering

被引:7
|
作者
Hu, Wen-Bo [1 ,3 ]
Wu, Xiao-Jun [2 ,3 ]
机构
[1] Jiangnan Univ, Sch Artificial Intelligence & Comp Sci, Wuxi 214122, Jiangsu, Peoples R China
[2] Jiangnan Univ, Sch IoT Engn, Wuxi 214122, Jiangsu, Peoples R China
[3] Jiangsu Prov Engn Lab Pattern Recognit & Computat, Wuxi, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Riemannian manifold; Sparse subspace clustering; Multi-geometric; STATISTICS; ALGORITHM;
D O I
10.1007/s11063-020-10274-z
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently, the Riemannian manifold has received special attention in unsupervised clustering since the real-world visual data usually resides on a special manifold where Euclidean geometry fails to capture. Although many clustering algorithms have been proposed, most of them use only a single geometric model to describe the data. In this paper, a multi-geometric subspace clustering model is proposed, and the subspace representation is learned together by constructing a shared affinity matrix of multi-order data. Experimental results on several different types of datasets show that the clustering performance of our proposed algorithm is better than most of subspaces algorithms.
引用
收藏
页码:849 / 867
页数:19
相关论文
共 50 条
  • [1] Multi-geometric Sparse Subspace Clustering
    Wen-Bo Hu
    Xiao-Jun Wu
    [J]. Neural Processing Letters, 2020, 52 : 849 - 867
  • [2] Multi-geometric block diagonal representation subspace clustering with low-rank kernel
    Liu, Maoshan
    Palade, Vasile
    Zheng, Zhonglong
    [J]. APPLIED INTELLIGENCE, 2024, : 12764 - 12790
  • [3] On Geometric Analysis of Affine Sparse Subspace Clustering
    Li, Chun-Guang
    You, Chong
    Vidal, Rene
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2018, 12 (06) : 1520 - 1533
  • [4] Deep Multi-view Sparse Subspace Clustering
    Tang, Xiaoliang
    Tang, Xuan
    Wang, Wanli
    Fang, Li
    Wei, Xian
    [J]. PROCEEDINGS OF 2018 VII INTERNATIONAL CONFERENCE ON NETWORK, COMMUNICATION AND COMPUTING (ICNCC 2018), 2018, : 115 - 119
  • [5] Binary multi-view sparse subspace clustering
    Zhao, Jianxi
    Li, Yang
    [J]. NEURAL COMPUTING & APPLICATIONS, 2023, 35 (29): : 21751 - 21770
  • [6] Adaptive multi-granularity sparse subspace clustering
    Deng, Tingquan
    Yang, Ge
    Huang, Yang
    Yang, Ming
    Fujita, Hamido
    [J]. INFORMATION SCIENCES, 2023, 642
  • [7] Binary multi-view sparse subspace clustering
    Jianxi Zhao
    Yang Li
    [J]. Neural Computing and Applications, 2023, 35 : 21751 - 21770
  • [8] Sparse Subspace Clustering
    Elhamifar, Ehsan
    Vidal, Rene
    [J]. CVPR: 2009 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOLS 1-4, 2009, : 2782 - 2789
  • [9] Multi-Objective Sparse Subspace Clustering for Hyperspectral Imagery
    Wan, Yuting
    Zhong, Yanfei
    Ma, Ailong
    Zhang, Liangpei
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (04): : 2290 - 2307
  • [10] Scalable Sparse Subspace Clustering
    Peng, Xi
    Zhang, Lei
    Yi, Zhang
    [J]. 2013 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2013, : 430 - 437