Static Disorder in Lead Halide Perovskites

被引:26
|
作者
Zeiske, Stefan [1 ]
Sandberg, Oskar J. [1 ]
Zarrabi, Nasim [1 ]
Wolff, Christian M. [2 ]
Raoufi, Meysam [3 ]
Pena-Camargo, Francisco [3 ]
Gutierrez-Partida, Emilio [3 ]
Meredith, Paul [1 ]
Stolterfoht, Martin [3 ]
Armin, Ardalan [1 ]
机构
[1] Swansea Univ, Dept Phys, Sustainable Adv Mat Ser SAM, Swansea SA2 8PP, Wales
[2] EPFL STI IEM PV LAB, CH-2002 Neuchatel, Switzerland
[3] Univ Potsdam, Soft Matter Phys Inst Phys & Astron, D-14476 Potsdam, Germany
来源
JOURNAL OF PHYSICAL CHEMISTRY LETTERS | 2022年 / 13卷 / 31期
基金
英国工程与自然科学研究理事会;
关键词
OPTICAL-ABSORPTION EDGE; SOLAR-CELLS;
D O I
10.1021/acs.jpclett.2c01652
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In crystalline and amorphous semiconductors, the temperature-dependent Urbach energy can be determined from the inverse slope of the logarithm of the absorption spectrum and reflects the static and dynamic energetic disorder. Using recent advances in the sensitivity of photocurrent spectroscopy methods, we elucidate the temperature-dependent Urbach energy in lead halide perovskites containing different numbers of cation components. We find Urbach energies at room temperature to be 13.0 +/- 1.0, 13.2 +/- 1.0, and 13.5 +/- 1.0 meV for single, double, and triple cation perovskite. Static, temperature-independent contributions to the Urbach energy are found to be as low as 5.1 ?+/- 0.5, 4.7 +/- 0.3, and 3.3 +/- 0.9 meV for the same systems. Our results suggest that, at a low temperature, the dominant static disorder in perovskites is derived from zero-point phonon energy rather than structural disorder. This is unusual for solution-processed semiconductors but broadens the potential application of perovskites further to quantum electronics and devices.
引用
收藏
页码:7280 / 7285
页数:6
相关论文
共 50 条
  • [1] Lattice disorder influences the photocarrier dynamics in lead halide perovskites
    Zhang, Haijuan
    Zhang, Taiyang
    Wang, Yong
    Chen, Yuetian
    Zhao, Yixin
    Chen, Jie
    [J]. MATERIALS HORIZONS, 2023, 10 (03) : 875 - 880
  • [2] Understanding lead halide perovskites
    Zhu, Xiaoyang
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2020, 153 (03):
  • [3] From Lead Halide Perovskites to Lead-Free Metal Halide Perovskites and Perovskite Derivatives
    Xiao, Zewen
    Song, Zhaoning
    Yan, Yanfa
    [J]. ADVANCED MATERIALS, 2019, 31 (47)
  • [4] Addressing the Stability of Lead Halide Perovskites
    Davies, Matthew L.
    [J]. JOULE, 2020, 4 (08) : 1626 - 1627
  • [5] Ferroelectric polarons in lead halide perovskites
    Zhu, Xiaoyang
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [6] Large polarons in lead halide perovskites
    Miyata, Kiyoshi
    Meggiolaro, Daniele
    Trinh, M. Tuan
    Joshi, Prakriti P.
    Mosconi, Edoardo
    Jones, Skyler C.
    De Angelis, Filippo
    Zhu, X. -Y.
    [J]. SCIENCE ADVANCES, 2017, 3 (08):
  • [7] Carrier Transport in Lead Halide Perovskites
    Sun, Qi
    Zhang, Xinlei
    Zhao, Chunyi
    Tian, Wenming
    Jin, Shengye
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2023, 127 (47): : 22868 - 22879
  • [8] Making and Breaking of Lead Halide Perovskites
    Manser, Joseph S.
    Saidaminov, Makhsud I.
    Christians, Jeffrey A.
    Bakr, Osman M.
    Kamat, Prashant V.
    [J]. ACCOUNTS OF CHEMICAL RESEARCH, 2016, 49 (02) : 330 - 338
  • [9] Identification of lead vacancy defects in lead halide perovskites
    David J. Keeble
    Julia Wiktor
    Sandeep K. Pathak
    Laurie J. Phillips
    Marcel Dickmann
    Ken Durose
    Henry J. Snaith
    Werner Egger
    [J]. Nature Communications, 12
  • [10] Identification of lead vacancy defects in lead halide perovskites
    Keeble, David J.
    Wiktor, Julia
    Pathak, Sandeep K.
    Phillips, Laurie J.
    Dickmann, Marcel
    Durose, Ken
    Snaith, Henry J.
    Egger, Werner
    [J]. NATURE COMMUNICATIONS, 2021, 12 (01)