Haplotype inference with pseudo-Boolean optimization

被引:10
|
作者
Graca, Ana [1 ,2 ]
Marques-Silva, Joao [3 ]
Lynce, Ines [1 ,2 ]
Oliveira, Arlindo L. [1 ,2 ]
机构
[1] Univ Tecn Lisboa, IST, Lisbon, Portugal
[2] INESC ID Lisboa, Lisbon, Portugal
[3] Univ Coll Dublin, Sch Comp Sci & Informat, Complex & Adapt Syst Lab, Dublin 2, Ireland
关键词
Haplotype inference; Pure parsimony; Pseudo-Boolean optimization; GENOTYPE DATA; PURE PARSIMONY; RECONSTRUCTION; ALGORITHMS; DIVERSITY; MODEL;
D O I
10.1007/s10479-009-0675-4
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The fast development of sequencing techniques in the recent past has required an urgent development of efficient and accurate haplotype inference tools. Besides being a crucial issue in genetics, haplotype inference is also a challenging computational problem. Among others, pure parsimony is a viable modeling approach to solve the problem of haplotype inference and also an interesting NP-hard problem in itself. Recently, the introduction of SAT-based methods, including pseudo-Boolean optimization (PBO) methods, has produced very efficient solvers. This paper provides a detailed description of RPoly, a PBO approach for the haplotype inference by pure parsimony (HIPP) problem. Moreover, an extensive evaluation of existent HIPP solvers, on a comprehensive set of instances, confirms that RPoly is currently the most efficient and robust HIPP approach.
引用
收藏
页码:137 / 162
页数:26
相关论文
共 50 条
  • [1] Haplotype inference with pseudo-Boolean optimization
    Ana Graça
    João Marques-Silva
    Inês Lynce
    Arlindo L. Oliveira
    [J]. Annals of Operations Research, 2011, 184 : 137 - 162
  • [2] Efficient haplotype inference with pseudo-boolean optimization
    Graca, Ana
    Marques-Silva, Joao
    Lynce, Ines
    Oliveira, Arlindo L.
    [J]. ALGEBRAIC BIOLOGY, PROCEEDINGS, 2007, 4545 : 125 - +
  • [3] Pseudo-Boolean optimization
    Boros, E
    Hammer, PL
    [J]. DISCRETE APPLIED MATHEMATICS, 2002, 123 (1-3) : 155 - 225
  • [4] Algebraic method to pseudo-Boolean function and its application in pseudo-Boolean optimization
    Li, Zhiqiang
    Song, Jinli
    Xiao, Huimin
    [J]. PROCEEDINGS OF THE 10TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA 2012), 2012, : 2468 - 2472
  • [6] Inference methods for a pseudo-Boolean satisfiability solver
    Dixon, HE
    Ginsberg, ML
    [J]. EIGHTEENTH NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE (AAAI-02)/FOURTEENTH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE (IAAI-02), PROCEEDINGS, 2002, : 635 - 640
  • [7] Superpixels via Pseudo-Boolean Optimization
    Zhang, Yuhang
    Hartley, Richard
    Mashford, John
    Burn, Stewart
    [J]. 2011 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2011, : 1387 - 1394
  • [8] Optimization over pseudo-Boolean lattices
    [J]. Hosseinyazdi, M. (m.h.yazdi@graduate.uk.ac.ir), 2005, WSEAS (04):
  • [9] Nonlinear Pseudo-Boolean Optimization: Relaxation or Propagation?
    Berthold, Timo
    Heinz, Stefan
    Pfetsch, Marc E.
    [J]. THEORY AND APPLICATIONS OF SATISFIABILITY TESTING - SAT 2009, PROCEEDINGS, 2009, 5584 : 441 - +
  • [10] Generalized Roof Duality for Pseudo-Boolean Optimization
    Kahl, Fredrik
    Strandmark, Petter
    [J]. 2011 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2011, : 255 - 262