Lithium-ion storage properties of titanium oxide nanosheets

被引:71
|
作者
Augustyn, Veronica [1 ,2 ]
White, Edward R. [2 ,3 ]
Ko, Jesse [1 ,2 ]
Gruener, George [2 ,3 ]
Regan, Brian C. [2 ,3 ]
Dunn, Bruce [1 ,2 ]
机构
[1] Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Calif NanoSyst Inst, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA
关键词
HYDROGEN TITANATE NANOWIRES; TIO2; ANATASE; CARBON NANOTUBES; INTERCALATION; DEPENDENCE; INSERTION; ELECTRODE; BEHAVIOR;
D O I
10.1039/c3mh00070b
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A detailed kinetic analysis is used to determine the fundamental energy storage properties and rate capabilities of TiO2 nanosheets. These materials exhibit different properties compared to anatase nano-crystals including a shift to lower redox potentials for Li+ storage and the reversible charge storage of Na+. Nanosheets are intriguing for energy storage applications due to the fact that nearly the entire surface of the material, including specific crystal facets, can be exposed to the electrolyte.
引用
下载
收藏
页码:219 / 223
页数:5
相关论文
共 50 条
  • [1] Enhanced Electrochemical Lithium-Ion Charge Storage of Iron Oxide Nanosheets
    Niu, Sibo
    McFeron, Ryan
    Godinez-Salomon, Fernando
    Chapman, Brian S.
    Damin, Craig A.
    Tracy, Joseph B.
    Augustyn, Veronica
    Rhodes, Christopher P.
    CHEMISTRY OF MATERIALS, 2017, 29 (18) : 7794 - 7807
  • [2] Hydrothermally Processed Oxide Nanostructures and Their Lithium-ion Storage Properties
    Ahn, Jung-Ho
    Kim, Yong-Jin
    Wang, Guoxiu
    NANOSCALE RESEARCH LETTERS, 2010, 5 (11): : 1841 - 1845
  • [3] Hybrid Anodes of Lithium Titanium Oxide and Carbon Onions for Lithium-Ion and Sodium-Ion Energy Storage
    Shim, Hwirim
    Arnold, Stefanie
    Budak, Oeznil
    Ulbricht, Maike
    Srimuk, Pattarachai
    Presser, Volker
    ENERGY TECHNOLOGY, 2020, 8 (11)
  • [4] Nanosized titanium niobium oxide/carbon electrodes for lithium-ion energy storage applications
    Shim, Hwirim
    Lim, Eunho
    Fleischmann, Simon
    Quade, Antje
    Tolosa, Aura
    Presser, Volker
    SUSTAINABLE ENERGY & FUELS, 2019, 3 (07) : 1776 - 1789
  • [5] Anode properties of titanium oxide nanotube and graphite composites for lithium-ion batteries
    Choi, Min Gyu
    Lee, Young-Gi
    Song, Seung-Wan
    Kim, Kwang Man
    JOURNAL OF POWER SOURCES, 2010, 195 (24) : 8289 - 8296
  • [6] Preparation of reduced graphene oxide@nickel oxide nanosheets composites with enhanced lithium-ion storage performance
    Ren, Haibo
    Wen, Ziying
    Chen, Shuai
    Liu, Jinyun
    Joo, Sang Woo
    Huang, Jiarui
    MATERIALS CHEMISTRY AND PHYSICS, 2019, 232 : 229 - 239
  • [7] Incorporation of Natural Lithium-Ion Trappers into Graphene Oxide Nanosheets
    Ahmadi, Hadi
    Hosseini, Ehsan
    Cha-Umpong, Withita
    Abdollahzadeh, Mojtaba
    Korayem, Asghar Habibnejad
    Razmjou, Amir
    Chen, Vicki
    Asadnia, Mohsen
    ADVANCED MATERIALS TECHNOLOGIES, 2021, 6 (10)
  • [8] Engineering Titanium Dioxide Nanostructures for Enhanced Lithium-Ion Storage
    Lee, Dae-Hyeok
    Lee, Byoung-Hoon
    Sinha, Arun K.
    Park, Jae-Hyuk
    Kim, Min-Seob
    Park, Jungjin
    Shin, Heejong
    Lee, Kug-Seung
    Sung, Yung-Eun
    Hyeon, Taeghwan
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2018, 140 (48) : 16676 - 16684
  • [9] Nickel oxide nanospheres and their exceptional lithium-ion storage capacity
    Arnold, Corey
    Dangerfield, Aaron
    Meda, Lamartine
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251
  • [10] Graphene nanosheets based on controlled exfoliation process for enhanced lithium storage in lithium-ion battery
    Wan, Lijuan
    Ren, Zhaoyu
    Wang, Hui
    Wang, Gang
    Tong, Xin
    Gao, Shuanghong
    Bai, Jintao
    DIAMOND AND RELATED MATERIALS, 2011, 20 (5-6) : 756 - 761