NASA thermal control technologies for robotic spacecraft

被引:286
|
作者
Swanson, TD
Birur, GC
机构
[1] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
[2] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA
关键词
advanced thermal control; capillary pumped loops; loop heat pipes; variable emissivity surface; cryogenic; heat switches; thermal storage;
D O I
10.1016/S1359-4311(03)00036-X
中图分类号
O414.1 [热力学];
学科分类号
摘要
Technology development is inevitably a dynamic process-in search of an elusive goal. It is never truly clear whether the need for a particular technology drives its development, or the existence of a new capability initiates new applications. Technology development for the thermal control of spacecraft presents an excellent example of this situation. Nevertheless, it is imperative to have a basic plan to help guide and focus such an effort. Although this plan will be a living document that changes with time to reflect technological developments, perceived needs, perceived opportunities, and the ever-changing funding environment, it is still a very useful tool, This presentation. summarizes the current efforts at National Aeronautics, and Space Administration (NASA)/Goddard and NASA/JPL to develop new thermal control technology for future robotic-NASA missions.
引用
收藏
页码:1055 / 1065
页数:11
相关论文
共 50 条
  • [1] Spacecraft Thermal Control Technologies
    Gligoroska, Sara
    JOHNSON MATTHEY TECHNOLOGY REVIEW, 2021, 65 (04): : 593 - 594
  • [2] Review of Modern Spacecraft Thermal Control Technologies
    Hengeveld, Derek W.
    Mathison, Margaret M.
    Braun, James E.
    Groll, Eckhard A.
    Williams, Andrew D.
    HVAC&R RESEARCH, 2010, 16 (02): : 189 - 220
  • [3] NASA spacecraft
    不详
    RETHINKING MARXISM-A JOURNAL OF ECONOMICS CULTURE & SOCIETY, 2008, 20 (04): : 644 - 653
  • [4] Extreme environment technologies for NASA's robotic planetary exploration
    Balint, Tibor S.
    Kolawa, Elizabeth A.
    Cutts, James A.
    Peterson, Craig E.
    ACTA ASTRONAUTICA, 2008, 63 (1-4) : 285 - 298
  • [5] Engineering testing of the capillary pumped loop thermal control system for the NASA EOS-AM spacecraft
    Krotiuk, WJ
    IECEC-97 - PROCEEDINGS OF THE THIRTY-SECOND INTERSOCIETY ENERGY CONVERSION ENGINEERING CONFERENCE, VOLS 1-4: VOL.1: AEROSPACE POWER SYSTEMS AND TECHNOL; VOL 2: ELECTROCHEMICAL TECHNOL, CONVERSION TECHNOL, THERMAL MANAGEMENT; VOLS 3: ENERGY SYSTEMS, RENEWABLE ENERGY RESOURCES, ENVIRONMENTAL IMPACT, POLICY IMPACTS ON ENERGY; VOL 4: POST DEADLINE PAPERS, INDEX, 1997, : 1463 - 1469
  • [6] DESIGN FOR SPACECRAFT THERMAL CONTROL
    BROOKS, PJ
    CME-CHARTERED MECHANICAL ENGINEER, 1985, 32 (09): : 36 - 40
  • [7] The thermal control of ARTEMIS spacecraft
    Sacchi, E
    Massa, E
    Colangelo, G
    SIXTH EUROPEAN SYMPOSIUM ON SPACE ENVIRONMENTAL CONTROL SYSTEMS, VOLS 1 AND 2, 1997, 400 : 49 - 55
  • [8] MEMS thermal switch for spacecraft thermal control
    Beasley, MA
    Firebaugh, SL
    Edwards, RL
    Keeney, AC
    Osiander, R
    MEMS/MOEMS COMPONENTS AND THEIR APPLICATIONS, 2004, 5344 : 98 - 105
  • [9] Current and future techniques for spacecraft thermal control .1. Design drivers and current technologies
    DeParolis, MN
    PinterKrainer, W
    ESA BULLETIN-EUROPEAN SPACE AGENCY, 1996, (87) : 73 - 83
  • [10] Thermal isolation and thermal sensing technologies of spacecraft under laser irradiation
    Li, Xingchen
    Lu, Wei
    Ding, Ye
    Li, Jian
    Gong, Zhiqiang
    Yang, Zhen
    SEVENTH ASIA PACIFIC CONFERENCE ON OPTICS MANUFACTURE (APCOM 2021), 2022, 12166