PGE-rich disseminated zones with discrete platinum-group minerals (Pd, Pt and Ph mineral phases) have been discovered in three thick (80-130 m), differentiated (peridotite-gabbro) mafic-ultramafic flows of the Archean Abitibi greenstone belt, Ontario. Three mineralization zones (whole-rock Sigma PGE + Au = up to 1000 ppb) occur along four stratigraphic cross sections through a 2 km strike-length of the Boston Creek Flow ferropicritic basalt. Their occurrence most strikingly correlates with lenticular-podiform concentrations of disseminated chalcopyrite (1%) and clinopyroxene + interstitial mag netite-ilmenite intergrowths (15-20% oxide), high concentrations of related metals (3000 ppm Cu, 3000 ppm S, 1200 ppb Ag, and 1000 ppm V), strong PGE depletion in adjacent rocks and along strike, and lithological and textural complexity in the margins of the central gabbro-diorite layer. The mineralization zone (whole-rock Ir + Pt + Pd + Au = 110 ppb) within Thee's Flow tholeiitic basalt is somewhat similar in occurrence, style, and composition to those within the Boston Creek Flow. In contrast, the mineralization zone (whole-rock Ir + Pt + Pd + Au = 340 ppb) in Fred's Flow komatiitic basalt most strikingly correlates with vesicle-filling intergrowths of pyrrhotite + pentlandite +/- chalcopyrite (2 modal %) and high whole-rock concentrations of Ni (2500 ppm), Cu (700 ppm), and S (1.1%) in the upper chilled margin of the flow. Although apparently uneconomic, these flow-hosted PGE mineralization zones are of interest in exploration, because they an more similar in stratigraphic setting, style, and composition to PGE-rich disseminated Fe-Cu sulfide mineralization zones within thick differentiated intrusions than to mineralization zones in other Archean volcanic rocks. The characteristics of the mineralization zones and their host rocks, especially high degrees of PGE enrichment, vertical and horizontal patterns of PGE depletion, and accumulation of clinopyroxene + magnetite-ilmenite intergrowths, indicate a critical genetic role for variations in the regime of melt flowage. The mineralization zones in the Boston Creek and Thee's Flows are interpreted to have formed by simultaneous in situ formation of PGE-rich Fe-Cu sulfide and Fe-Ti oxide from flowing silicate liquid in the margins of internal lava channels. The mineralization zone in Fred's Flow is interpreted to have formed by pending and coalescence of PGE-enriched sulfurous vapor bubbles in the upper chilled margin during olivine accumulation on the base of a dynamic lava channel. The relative abundance of PGE mineralization zones and high degree of PGE enrichment in the Boston Creek Flow suggest that the most favorable exploration targets are rocks crystallized from late-stage, highly fractionated derivative liquids in large differentiated ferropicritic units.