Zero-Shot Learning across Heterogeneous Overlapping Domains

被引:14
|
作者
Kumar, Anjishnu [1 ]
Muddireddy, Pavankumar Reddy [2 ]
Dreyer, Markus [1 ]
Hoffmeister, Bjorn [1 ]
机构
[1] Amazon Inc, Seattle, WA 98109 USA
[2] Univ Illinois, Urbana, IL USA
关键词
D O I
10.21437/Interspeech.2017-516
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a zero-shot learning approach for text classification, predicting which natural language understanding domain can handle a given utterance. Our approach can predict domains at runtime that did not exist at training time. We achieve this extensibility by learning to project utterances and domains into the same embedding space while generating each domain-specific embedding from a set of attributes that characterize the domain. Our model is a neural network trained via ranking loss. We evaluate the performance of this zero-shot approach on a subset of a virtual assistant's third-party domains and show the effectiveness of the technique on new domains not observed during training. We compare to generative baselines and show that our approach requires less storage and performs better on new domains.
引用
收藏
页码:2914 / 2918
页数:5
相关论文
共 50 条
  • [1] Learning the Compositional Domains for Generalized Zero-shot Learning
    Dong, Hanze
    Fu, Yanwei
    Hwang, Sung Ju
    Sigal, Leonid
    Xue, Xiangyang
    [J]. COMPUTER VISION AND IMAGE UNDERSTANDING, 2022, 221
  • [2] Ordinal Zero-Shot Learning
    Huo, Zengwei
    Geng, Xin
    [J]. PROCEEDINGS OF THE TWENTY-SIXTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 1916 - 1922
  • [3] Zero-shot causal learning
    Nilforoshan, Hamed
    Moor, Michael
    Roohani, Yusuf
    Chen, Yining
    Surina, Anja
    Yasunaga, Michihiro
    Oblak, Sara
    Leskovec, Jure
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [4] Zero-Shot Kernel Learning
    Zhang, Hongguang
    Koniusz, Piotr
    [J]. 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 7670 - 7679
  • [5] Rebalanced Zero-Shot Learning
    Ye, Zihan
    Yang, Guanyu
    Jin, Xiaobo
    Liu, Youfa
    Huang, Kaizhu
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2023, 32 : 4185 - 4198
  • [6] Incremental Zero-Shot Learning
    Wei, Kun
    Deng, Cheng
    Yang, Xu
    Tao, Dacheng
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (12) : 13788 - 13799
  • [7] Active Zero-Shot Learning
    Xie, Sihong
    Wang, Shaoxiong
    Yu, Philip S.
    [J]. CIKM'16: PROCEEDINGS OF THE 2016 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, 2016, : 1889 - 1892
  • [8] Zero-shot Metric Learning
    Xu, Xinyi
    Cao, Huanhuan
    Yang, Yanhua
    Yang, Erkun
    Deng, Cheng
    [J]. PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2019, : 3996 - 4002
  • [9] Spherical Zero-Shot Learning
    Shen, Jiayi
    Xiao, Zehao
    Zhen, Xiantong
    Zhang, Lei
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (02) : 634 - 645
  • [10] Lifelong Zero-Shot Learning
    Wei, Kun
    Deng, Cheng
    Yang, Xu
    [J]. PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, : 551 - 557