The GRAVITY metrology system: modeling a metrology in optical fibers

被引:1
|
作者
Blind, N. [1 ]
Huber, H. [1 ]
Eisenhauer, F. [1 ]
Weber, J. [1 ]
Gillessen, S. [1 ]
Lippa, M. [1 ]
Burtscher, L. [1 ]
Hans, O. [1 ]
Haug, M. [1 ]
Haussmann, F. [1 ]
Huber, S. [1 ]
Janssen, A. [1 ]
Kellner, S. [1 ]
Kok, Y. [1 ]
Ott, T. [1 ]
Pfuhl, O. [1 ]
Sturm, E. [1 ]
Wieprecht, E. [1 ]
Amorim, A. [2 ]
Brandner, W. [3 ]
Perrin, G. [4 ]
Perraut, K. [5 ]
Straubmeier, C. [6 ]
机构
[1] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany
[2] Univ Lisbon, Fac Ciencias, SIM, P-1749016 Lisbon, Portugal
[3] Max Planck Inst Astron, D-69117 Heidelberg, Germany
[4] Observ Paris, LESIA, F-92195 Meudon, France
[5] Univ Grenoble 1, CNRS INSU, UMR 5274, IPAG, Grenoble, France
[6] Univ Cologne, Inst Phys 1, D-50937 Cologne, Germany
来源
关键词
Optical Interferometry; VLTI; GRAVITY; Metrology; Photonics; Modeling; SILICA;
D O I
10.1117/12.2055553
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
GRAVITY is the second generation VLT Interferometer (VLTI) instrument for high-precision narrow-angle astrometry and phase-referenced interferometric imaging. The laser metrology system of GRAVITY is at the heart of its astrometric mode, which must measure the distance of 2 stars with a precision of 10 micro-arcseconds. This means the metrology has to measure the optical path difference between the two beam combiners of GRAVITY to a level of 5 nm. The metrology design presents some non-common paths that have consequently to be stable at a level of 1 nm. Otherwise they would impact the performance of GRAVITY. The various tests we made in the past on the prototype give us hints on the components responsible for this error, and on their respective contribution to the total error. It is however difficult to assess their exact origin from only OPD measurements, and therefore, to propose a solution to this problem. In this paper, we present the results of a semi-empirical modeling of the fibered metrology system, relying on theoretical basis, as well as on characterisations of key components. The modeling of the metrology system regarding various effects, e.g., temperature, waveguide heating or mechanical stress, will help us to understand how the metrology behave. The goals of this modeling are to 1) model the test set-ups and reproduce the measurements (as a validation of the modeling), 2) determine the origin of the non-common path errors, and 3) propose modifications to the current metrology design to reach the required mm stability.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] GRAVITY: metrology
    Gillessen, Stefan
    Lippa, Magdalena
    Eisenhauer, Frank
    Pfuhl, Oliver
    Haug, Marcus
    Kellner, Stefan
    Ott, Thomas
    Wieprecht, Ekkehard
    Sturm, Eckhard
    Haussmann, Frank
    Kister, Clemens F.
    Moch, David
    Thiel, Markus
    [J]. OPTICAL AND INFRARED INTERFEROMETRY III, 2012, 8445
  • [2] The metrology system of the VLTI instrument GRAVITY
    Lippa, Magdalena
    Gillessen, Stefan
    Blind, Nicolas
    Kok, Yipting
    Yazici, Senol
    Weber, Johannes
    Pfuhl, Oliver
    Haug, Marcus
    Kellner, Stefan
    Wieprecht, Ekkehard
    Eisenhauer, Frank
    Genzel, Reinhard
    Hans, Oliver
    Haussmann, Frank
    Huber, David
    Kratschmann, Tobias
    Ott, Thomas
    Plattner, Markus
    Rau, Christian
    Sturm, Eckhard
    Waisberg, Idel
    Wiezorrek, Erich
    Perrin, Guy
    Perraut, Karine
    Brandner, Wolfgang
    Straubmeier, Christian
    Amorim, Antonio
    [J]. OPTICAL AND INFRARED INTERFEROMETRY AND IMAGING V, 2016, 9907
  • [3] Optical metrology for measuring Earth's gravity
    Cesare, Stefano
    Amata, Gino Bruno
    Anselmi, Alberto
    Bonino, Luciana
    Leone, Bruno
    Massotti, Luca
    Mottini, Sergio
    Nicklaus, Kolja
    Pisani, Marco
    Zucco, Massimo
    [J]. 2019 IEEE 6TH INTERNATIONAL WORKSHOP ON METROLOGY FOR AEROSPACE (METROAEROSPACE), 2019, : 495 - 499
  • [4] Performance modeling of optical metrology systems
    Dutta, K
    Benson, RS
    [J]. INTERFEROMETRY IN SPACE, PTS 1 AND 2, 2003, 4852 : 839 - 848
  • [5] Developments in optical modeling methods for metrology
    Davidson, MP
    [J]. METROLOGY, INSPECTION, AND PROCESS CONTROL FOR MICROLITHOGRAPHY XIII, PTS 1 AND 2, 1999, 3677 : 866 - 875
  • [6] Modeling Aspects in Optical Metrology IV
    Bodermann, Bernd
    [J]. MODELING ASPECTS IN OPTICAL METROLOGY IV, 2013, 8789
  • [7] The GRAVITY Spectrometers Metrology laser blocking system
    Araujo-Hauck, Constanza
    Fischer, Sebastian
    Gillessen, Stefan
    Straubmeier, Christian
    Wiest, Michael
    Yazici, Senol
    Wank, Imke
    Eisenhauer, Frank
    Perrin, Guy S.
    Brandner, Wolfgang
    Perraut, Karine
    Amorim, Antonio
    Eckart, Andreas
    [J]. OPTICAL AND INFRARED INTERFEROMETRY III, 2012, 8445
  • [8] GRAVITY: The impact of non-common optical paths within the metrology system
    Kok, Yitping
    Gillessen, Stefan
    Lacour, Sylvestre
    Eisenhauer, Frank
    Blind, Nicolas
    Weber, Johannes
    Lippa, Magdalena
    Pfuhl, Oliver
    Burtscher, Leonard
    Wieprecht, Ekkehard
    Ott, Thomas
    Haug, Marcus
    Kellner, Stefan
    Haussmann, Frank
    Sturm, Eckhard
    Janssen, Annemieke
    Genzel, Reinhard
    Perrin, Guy
    Perraut, Karine
    Straubmeier, Christian
    Brandner, Wolfgang
    Amorim, Antonio
    Hans, Oliver
    [J]. OPTICAL AND INFRARED INTERFEROMETRY IV, 2014, 9146
  • [9] OPTICAL METROLOGY
    CAULFIELD, HJ
    [J]. OPTICAL ENGINEERING, 1979, 18 (05) : 447 - 447
  • [10] Modeling Aspects in Optical Metrology II Introduction
    Bosse, Harald
    [J]. MODELING ASPECTS IN OPTICAL METROLOGY II, 2009, 7390 : XI - XI