Slow divergence integrals in generalized Lienard equations near centers

被引:0
|
作者
Huzak, Renato [1 ]
De Maesschalck, Peter [1 ]
机构
[1] Hasselt Univ, B-3590 Diepenbeek, Belgium
关键词
generalized Lienard equations; limit cycles; slow divergence integral; slow-fast systems; LIMIT-CYCLE BIFURCATIONS; HILBERTS 16TH PROBLEM; DIFFERENTIAL-EQUATIONS; CUSPIDAL LOOP; SYSTEMS; UNIQUENESS; NUMBER;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using techniques from singular perturbations we show that for any n >= 6 and m >= 2 there are Lienard equations {x = y - F(x), y = G ( x)}, with F a polynomial of degree n and G a polynomial of degree m, having at least 2[n-2/2] + [m/2] hyperbolic limit cycles, where [center dot] denotes "the greatest integer equal or below".
引用
收藏
页码:1 / 10
页数:10
相关论文
共 50 条