A complex valued approach to the solutions of Riemann-Liouville integral, Atangana-Baleanu integral operator and non-linear Telegraph equation via fixed point method

被引:72
|
作者
Panda, Sumati Kumari [1 ]
Abdeljawad, Thabet [2 ]
Ravichandran, C. [3 ]
机构
[1] GMR Inst Technol, Dept Math, Rajam 532127, Andhra Pradesh, India
[2] Prince Sultan Univ, Dept Math & Gen Sci, POB 66833, Riyadh 11586, Saudi Arabia
[3] Kongunadu Arts & Sci Coll Autonomous, PG & Res Dept Math, Coimbatore 641029, Tamil Nadu, India
关键词
Complex valued double controlled metric space; Complex valued extended metric space; Complex valued controlled metric space; Riemann-Liouville integral; Complex valued Atangana-Baleanu integral operator and telegraph equation; SIMULATIONS; THEOREMS;
D O I
10.1016/j.chaos.2019.109439
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper involves complex valued versions of Riemann-Liouville integral, Atangana-Baleanu integral operator and non-linear Telegraph equation. Under various suitable assumptions the results are established in the setting of complex valued double controlled metric space. Thereafter, by making consequent use of the fixed point method, short and simple proofs are obtained for solutions of Riemann-Liouville integral, complex valued Atangana-Baleanu integral operator and non-linear Telegraph equation. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:11
相关论文
共 15 条
  • [1] Contributions of the fixed point technique to solve the 2D Volterra integral equations, Riemann-Liouville fractional integrals, and Atangana-Baleanu integral operators
    Hammad, Hasanen A.
    Aydi, Hassen
    Mlaiki, Nabil
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [2] Existence of Urysohn and Atangana-Baleanu fractional integral inclusion systems solutions via common fixed point of multi-valued operators
    Amiri, Pari
    Samei, Mohammad Esmael
    [J]. CHAOS SOLITONS & FRACTALS, 2022, 165
  • [3] Novel fixed point approach to Atangana-Baleanu fractional and Lp-Fredholm integral equations
    Panda, Sumati Kumari
    Abdeljawad, Thabet
    Ravichandran, C.
    [J]. ALEXANDRIA ENGINEERING JOURNAL, 2020, 59 (04) : 1959 - 1970
  • [4] Contributions of the fixed point technique to solve the 2D Volterra integral equations, Riemann–Liouville fractional integrals, and Atangana–Baleanu integral operators
    Hasanen A. Hammad
    Hassen Aydi
    Nabil Mlaiki
    [J]. Advances in Difference Equations, 2021
  • [5] Nonlinear Caputo Fractional Derivative with Nonlocal Riemann-Liouville Fractional Integral Condition Via Fixed Point Theorems
    Borisut, Piyachat
    Kumam, Poom
    Ahmed, Idris
    Sitthithakerngkiet, Kanokwan
    [J]. SYMMETRY-BASEL, 2019, 11 (06):
  • [6] Fixed point theory and approximate solutions of non-linear singular integral equations
    Mustafa, Nizami
    [J]. COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2008, 53 (11) : 1047 - 1058
  • [7] Existence Results of Global Solutions for a Coupled Implicit Riemann-Liouville Fractional Integral Equation via the Vector Kuratowski Measure of Noncompactness
    Laksaci, Noura
    Boudaoui, Ahmed
    Shatanawi, Wasfi
    Shatnawi, Taqi A. M.
    [J]. FRACTAL AND FRACTIONAL, 2022, 6 (03)
  • [8] Quasi wavelet numerical approach of non-linear reaction diffusion and integro reaction-diffusion equation with Atangana-Baleanu time fractional derivative
    Kumar, Sachin
    Pandey, Prashant
    [J]. CHAOS SOLITONS & FRACTALS, 2020, 130
  • [9] THE DEPENDENCE OF LOCAL INTEGRAL MANIFOLDS OF NON-LINEAR EQUATION IN THE NEIGHBORHOOD OF A COMPLEX REST POINT ON PARAMETERS
    LYKOVA, OB
    [J]. DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1980, (03): : 18 - 21
  • [10] Solvability and numerical method for non-linear Volterra integral equations by using Petryshyn's fixed point theorem
    Deep, Amar
    Kumar, Ashish
    Abbas, Syed
    Rabbani, Mohsen
    [J]. INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2022, 13 (01):