Temporal Feedback for Tweet Search with Non-Parametric Density Estimation

被引:26
|
作者
Efron, Miles [1 ]
Lin, Jimmy [2 ]
He, Jiyin [3 ]
de Vries, Arjen [3 ]
机构
[1] Univ Illinois, Grad Sch Lib & Informat Sci, Urbana, IL 61801 USA
[2] Univ Maryland, iSch, College Pk, MD 20742 USA
[3] Ctr Wiskunde & Informat, Amsterdam, Netherlands
基金
美国国家科学基金会;
关键词
temporal clustering; cluster hypothesis; relevance feedback; MODELS;
D O I
10.1145/2600428.2609575
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper investigates the temporal cluster hypothesis: in search tasks where time plays an important role, do relevant documents tend to cluster together in time? We explore this question in the context of tweet search and temporal feedback: starting with an initial set of results from a baseline retrieval model, we estimate the temporal density of relevant documents, which is then used for result reranking. Our contributions lie in a method to characterize this temporal density function using kernel density estimation, with and without human relevance judgments, and an approach to integrating this information into a standard retrieval model. Experiments on TREC datasets confirm that our temporal feedback formulation improves search effectiveness, thus providing support for our hypothesis. Our approach outperforms both a standard baseline and previous temporal retrieval models. Temporal feedback improves over standard lexical feedback (with and without human judgments), illustrating that temporal relevance signals exist independently of document content.
引用
收藏
页码:33 / 42
页数:10
相关论文
共 50 条
  • [1] Density estimation with non-parametric methods
    Fadda, D
    Slezak, E
    Bijaoui, A
    [J]. ASTRONOMY & ASTROPHYSICS SUPPLEMENT SERIES, 1998, 127 (02): : 335 - 352
  • [2] A fast non-parametric density estimation algorithm
    Egecioglu, O
    Srinivasan, A
    [J]. COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 1997, 13 (10): : 755 - 763
  • [3] A geometric approach to non-parametric density estimation
    Browne, Matthew
    [J]. PATTERN RECOGNITION, 2007, 40 (01) : 134 - 140
  • [4] NON-PARAMETRIC ESTIMATION OF A MULTIVARIATE PROBABILITY DENSITY
    EPANECHN.VA
    [J]. THEORY OF PROBILITY AND ITS APPLICATIONS,USSR, 1969, 14 (01): : 153 - &
  • [5] Non-parametric Density Estimation Based on Label Semantics
    Lawry, Jonathan
    Gonzalez-Rodriguez, Ines
    [J]. SOFT METHODS FOR HANDLING VARIABILITY AND IMPRECISION, 2008, 48 : 183 - +
  • [6] Non-parametric confidence bands in deconvolution density estimation
    Bissantz, Nicolai
    Dumbgen, Lutz
    Holzmann, Hajo
    Munk, Axel
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2007, 69 : 483 - 506
  • [7] Data assimilation by non-parametric local density estimation
    Torfs, P
    van Loon, E
    Wójcik, R
    Troch, P
    [J]. COMPUTATIONAL METHODS IN WATER RESOURCES, VOLS 1 AND 2, PROCEEDINGS, 2002, 47 : 1355 - 1362
  • [8] PARAMETRIC AND NON-PARAMETRIC DENSITY-ESTIMATION TO ACCOUNT FOR EXTREME EVENTS
    YAKOWITZ, S
    [J]. ADVANCES IN APPLIED PROBABILITY, 1988, 20 (01) : 13 - 13
  • [9] Density estimation using non-parametric and semi-parametric mixtures
    Wang, Yong
    Chee, Chew-Seng
    [J]. STATISTICAL MODELLING, 2012, 12 (01) : 67 - 92
  • [10] Anomaly and target detection by means of non-parametric density estimation
    Tidhar, G. A.
    Rotman, S. R.
    [J]. ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XVIII, 2012, 8390