Fluctuations and Stochastic Processes in One-Dimensional Many-Body Quantum Systems

被引:36
|
作者
Stimming, H. -P. [1 ]
Mauser, N. J. [1 ]
Schmiedmayer, J. [2 ]
Mazets, I. E. [1 ,2 ,3 ]
机构
[1] Univ Vienna, Wolfgang Pauli Inst, A-1090 Vienna, Austria
[2] TU Wien, Atominst, A-1020 Vienna, Austria
[3] AF Ioffe Phys Tech Inst, St Petersburg 194021, Russia
基金
奥地利科学基金会;
关键词
GASES; NOISE; INTERFERENCE; FERMIONS;
D O I
10.1103/PhysRevLett.105.015301
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the fluctuation properties of a one-dimensional many-body quantum system composed of interacting bosons and investigate the regimes where quantum noise or, respectively, thermal excitations are dominant. For the latter, we develop a semiclassical description of the fluctuation properties based on the Ornstein-Uhlenbeck stochastic process. As an illustration, we analyze the phase correlation functions and the full statistical distributions of the interference between two one-dimensional systems, either independent or tunnel-coupled, and compare with the Luttinger-liquid theory.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Solution of classical stochastic one-dimensional many-body systems
    Bares, PA
    Mobilia, M
    PHYSICAL REVIEW LETTERS, 1999, 83 (25) : 5214 - 5217
  • [2] Prethermalization in one-dimensional quantum many-body systems with confinement
    Birnkammer, Stefan
    Bastianello, Alvise
    Knap, Michael
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [3] Efficient simulation of one-dimensional quantum many-body systems
    Vidal, G
    PHYSICAL REVIEW LETTERS, 2004, 93 (04) : 040502 - 1
  • [4] Prethermalization in one-dimensional quantum many-body systems with confinement
    Stefan Birnkammer
    Alvise Bastianello
    Michael Knap
    Nature Communications, 13
  • [5] Comment on "Solution of classical stochastic one-dimensional many-body systems"
    Park, SC
    Park, JM
    Kim, D
    PHYSICAL REVIEW LETTERS, 2000, 85 (04) : 892 - 892
  • [6] Thermalization and ergodicity in one-dimensional many-body open quantum systems
    Znidaric, Marko
    Prosen, Tomaz
    Benenti, Giuliano
    Casati, Giulio
    Rossini, Davide
    PHYSICAL REVIEW E, 2010, 81 (05):
  • [7] Relaxation processes in one-dimensional self-gravitating many-body systems
    Tsuchiya, T
    Gouda, N
    Konishi, T
    PHYSICAL REVIEW E, 1996, 53 (03): : 2210 - 2216
  • [8] Activity-induced ferromagnetism in one-dimensional quantum many-body systems
    Takasan, Kazuaki
    Adachi, Kyosuke
    Kawaguchi, Kyogo
    PHYSICAL REVIEW RESEARCH, 2024, 6 (02):
  • [9] New exact ground states for one-dimensional quantum many-body systems
    Koprucki, T
    Wagner, HJ
    JOURNAL OF STATISTICAL PHYSICS, 2000, 100 (3-4) : 779 - 790
  • [10] Yang-Lee zeros of one-dimensional quantum many-body systems
    Wang, XZ
    Kim, JS
    PHYSICAL REVIEW E, 1999, 59 (01): : 222 - 227