Unbounded mass radial solutions for the Keller-Segel equation in the disk

被引:2
|
作者
Bonheure, Denis [1 ]
Casteras, Jean-Baptiste [2 ]
Roman, Carlos [3 ]
机构
[1] Univ Libre Bruxelles, Dept Math, Campus Plaine CP 213,Bd Triomphe, B-1050 Brussels, Belgium
[2] Univ Lisbon, Fac Ciencias, CMAFCIO, Edificio C6,Piso 1, P-1749016 Lisbon, Portugal
[3] Pontificia Univ Catolica Chile, Fac Matemat, Vicuna Mackenna 4860, Santiago 7820436, Chile
关键词
STATIONARY SOLUTIONS; STEADY-STATES; SYSTEM;
D O I
10.1007/s00526-021-02081-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the boundary value problem {-Delta u + u - lambda e(u) = 0 ,u > 0 in B-1(0) partial derivative(nu)u = 0 on partial derivative B-1(0), whose solutions correspond to steady states of the Keller-Segel system for chemotaxis. Here B-1(0) is the unit disk,. the outer normal to partial derivative B-1(0), and lambda > 0 is a parameter. We show that, provided lambda is sufficiently small, there exists a family of radial solutions u(lambda) to this system which blow up at the origin and concentrate on partial derivative B-1(0), as lambda -> 0. These solutions satisfy lim(lambda -> 0) u lambda(0)/vertical bar in lambda vertical bar = 0 and 0 lim(lambda -> 0) 1/vertical bar in lambda vertical bar integral(B1(0)) (lambda eu lambda(x)) dx < infinity, having in particular unbounded mass, as lambda -> 0.
引用
收藏
页数:30
相关论文
共 50 条
  • [1] Unbounded mass radial solutions for the Keller–Segel equation in the disk
    Denis Bonheure
    Jean-Baptiste Casteras
    Carlos Román
    [J]. Calculus of Variations and Partial Differential Equations, 2021, 60
  • [2] Layered solutions with unbounded mass for the Keller-Segel equation
    Bonheure, Denis
    Casteras, Jean-Baptiste
    Noris, Benedetta
    [J]. JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2017, 19 (01) : 529 - 558
  • [3] Singular radial solutions for the Keller-Segel equation in high dimension
    Bonheure, Denis
    Casteras, Jean-Baptiste
    Foldes, Juraj
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2020, 134 : 204 - 254
  • [4] Layered solutions with unbounded mass for the Keller–Segel equation
    Denis Bonheure
    Jean-Baptiste Casteras
    Benedetta Noris
    [J]. Journal of Fixed Point Theory and Applications, 2017, 19 : 529 - 558
  • [5] Steady states with unbounded mass of the Keller-Segel system
    Pistoia, Angela
    Vaira, Giusi
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2015, 145 (01) : 203 - 222
  • [6] Stationary solutions to the Keller-Segel equation on curved planes
    Nagy, Akos
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2023, 153 (01) : 327 - 343
  • [7] EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A HYPERBOLIC KELLER-SEGEL EQUATION
    Fu, Xiaoming
    Griette, Quentin
    Magal, Pierre
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2021, 26 (04): : 1931 - 1966
  • [8] Global radial solutions in classical Keller-Segel model of chemotaxis
    Biler, Piotr
    Karch, Grzegorz
    Pilarczyk, Dominika
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 267 (11) : 6352 - 6369
  • [9] Blowing up radial solutions in the minimal Keller-Segel model of chemotaxis
    Biler, Piotr
    Zienkiewicz, Jacek
    [J]. JOURNAL OF EVOLUTION EQUATIONS, 2019, 19 (01) : 71 - 90
  • [10] On global existence and blowup of solutions of Stochastic Keller-Segel type equation
    Misiats, Oleksandr
    Stanzhytskyi, Oleksandr
    Topaloglu, Ihsan
    [J]. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2022, 29 (01):