Bounded solutions for a class of Hamiltonian systems

被引:0
|
作者
Korman, Philip [1 ]
Peng, Guanying [1 ,2 ]
机构
[1] Univ Cincinnati, Cincinnati, OH 45220 USA
[2] Univ Arizona, Tucson, AZ USA
关键词
solutions bounded for all t; a priori estimates;
D O I
10.14232/ejqtde.2018.1.81
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We obtain solutions bounded for all t is an element of(-infinity, infinity) of systems of ordinary differential equations as limits of the solutions of the corresponding Dirichlet problems on (-L, L), with L -> infinity. Using the variational approach, we derive a priori estimates for the corresponding Dirichlet problems, allowing passage to the limit, via a diagonal sequence.
引用
收藏
页码:1 / 7
页数:7
相关论文
共 50 条
  • [1] Homoclinic solutions for a class of Hamiltonian systems
    Boughariou, M
    [J]. ADVANCED NONLINEAR STUDIES, 2004, 4 (01) : 57 - 69
  • [2] Periodic bounce solutions of Hamiltonian systems in bounded domains
    Liu, Yong
    Jiang, Mei-Yue
    [J]. ADVANCED NONLINEAR STUDIES, 2007, 7 (04) : 533 - 550
  • [3] Solutions of a class of Hamiltonian elliptic systems in RN
    Yang, Minbo
    Chen, Wenxiong
    Ding, Yanheng
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 362 (02) : 338 - 349
  • [4] MULTIPLE SOLUTIONS FOR A CLASS OF FRACTIONAL HAMILTONIAN SYSTEMS
    Xu, Jiafa
    O'Regan, Donal
    Zhang, Keyu
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2015, 18 (01) : 48 - 63
  • [5] Periodic solutions for a class of superquadratic Hamiltonian systems
    Tao, Zhu-Lian
    Yan, Shang'an
    Wu, Song-Lin
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 331 (01) : 152 - 158
  • [6] Existence and multiplicity of solutions for a class of Hamiltonian systems
    Claudianor O. Alves
    Tuhina Mukherjee
    [J]. Monatshefte für Mathematik, 2020, 192 : 269 - 289
  • [7] Periodic solutions for a class of nonautonomous Hamiltonian systems
    Long, YM
    Xu, XJ
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2000, 41 (3-4) : 455 - 463
  • [8] Multiple Solutions for a Class of Fractional Hamiltonian Systems
    Jiafa Xu
    Donal O’Regan
    Keyu Zhang
    [J]. Fractional Calculus and Applied Analysis, 2015, 18 : 48 - 63
  • [9] Existence and multiplicity of solutions for a class of Hamiltonian systems
    Alves, Claudianor O.
    Mukherjee, Tuhina
    [J]. MONATSHEFTE FUR MATHEMATIK, 2020, 192 (02): : 269 - 289
  • [10] Solutions for a class of fractional Hamiltonian systems with a parameter
    Ziheng Zhang
    César E. Torres Ledesma
    [J]. Journal of Applied Mathematics and Computing, 2017, 54 : 451 - 468