A multi-component mass transfer rate based model for simulation of non-equilibrium growth of crystals

被引:4
|
作者
Shu, Yi D. [1 ]
Li, Yang [1 ]
Zhang, Yang [1 ]
Liu, Jing J. [2 ]
Wang, Xue Z. [1 ,2 ]
机构
[1] South China Univ Technol, Sch Chem & Chem Engn, Guangzhou 510640, Guangdong, Peoples R China
[2] Univ Leeds, Sch Chem & Proc Engn, Leeds LS2 9JT, W Yorkshire, England
来源
CRYSTENGCOMM | 2018年 / 20卷 / 35期
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
AQUEOUS-SOLUTION; POPULATION BALANCE; CRYSTALLIZATION; ADSORPTION; IMPURITY; FACE; PREDICTION; SOLUBILITY; KINETICS; ACID;
D O I
10.1039/c8ce00639c
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A model based on multi-component mass transfer is proposed for modeling the non-equilibrium growth behavior of crystals during solution crystallization. The multi-component composition in crystals in any spatial location can thus be estimated at any time during a crystallization process. It can be applied to the estimation of impurity content and assessing the stability of crystalline pharmaceuticals. The multi-components are equally described by diffusion, adsorption and integration equations. The facet growth rates are estimated by the amount of materials grown on the surface divided by the material densities and the surface areas. This is unlike the conventional facet growth kinetic model in which the growth rate is correlated directly to supersaturation. The modeling method is illustrated by case studies of NaNO3 and KDP crystallization. The dynamic evolution of crystal composition and shape distribution is simulated.
引用
收藏
页码:5143 / 5153
页数:11
相关论文
共 50 条
  • [2] On the Axioms of Non-Equilibrium Thermodynamics for Multi-component Diffusion
    Verros, George D.
    Giovannopoulos, Fotios
    COMPUTATIONAL METHODS IN SCIENCE AND ENGINEERING, VOL 2: ADVANCES IN COMPUTATIONAL SCIENCE, 2009, 1148 : 258 - +
  • [3] Closure conditions for non-equilibrium multi-component models
    S. Müller
    M. Hantke
    P. Richter
    Continuum Mechanics and Thermodynamics, 2016, 28 : 1157 - 1189
  • [4] Closure conditions for non-equilibrium multi-component models
    Mueller, S.
    Hantke, M.
    Richter, P.
    CONTINUUM MECHANICS AND THERMODYNAMICS, 2016, 28 (04) : 1157 - 1189
  • [5] Adsorption model for multi-component heavy metal ions on clay based on non-equilibrium thermodynamics
    Zhang Z.-H.
    Zhang J.-P.
    Yantu Gongcheng Xuebao/Chinese Journal of Geotechnical Engineering, 2019, 41 (05): : 829 - 835
  • [6] Numerical simulation of multi-component inductive plasma flows under chemical non-equilibrium
    Vanden Abeele, D
    Abarbante, P
    Degrez, G
    González, JPM
    HEAT AND MASS TRANSFER UNDER PLASMA CONDITIONS, 1999, 891 : 340 - 347
  • [7] Editorial: Thermal non-equilibrium phenomena in multi-component fluids
    Fabrizio Croccolo
    Henri Bataller
    The European Physical Journal E, 2015, 38
  • [8] Editorial: Thermal non-equilibrium phenomena in multi-component fluids
    Croccolo, Fabrizio
    Bataller, Henri
    EUROPEAN PHYSICAL JOURNAL E, 2015, 38 (04):
  • [9] Covariant Relativistic Non-Equilibrium Thermodynamics of Multi-Component Systems
    Muschik, Wolfgang
    ENTROPY, 2019, 21 (11)
  • [10] A distributed-site model for non-equilibrium dissolution of multi-component residually trapped NAPL
    Hamed, MM
    Nelson, PD
    Bedient, PB
    ENVIRONMENTAL MODELLING & SOFTWARE, 2000, 15 (05) : 443 - 450