Numerical study of geometrical frustration. From square to triangular lattices

被引:1
|
作者
Hu, Feiming [1 ,2 ]
Ma, Tianxing [1 ,2 ,3 ]
Lin, Hai-Qing [1 ,2 ,4 ]
机构
[1] Chinese Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China
[2] Chinese Univ Hong Kong, Inst Theoret Phys, Hong Kong, Hong Kong, Peoples R China
[3] Beijing Normal Univ, Dept Phys, Beijing 100875, Peoples R China
[4] Beijing Computat Sci Res Ctr, Beijing 100084, Peoples R China
关键词
Geometrical frustration; Anti-ferromagnetic; Ferromagnetic; 2-DIMENSIONAL HUBBARD-MODEL; NEAREST-NEIGHBOR; NEEL ORDER; FERROMAGNETISM; SUPERCONDUCTIVITY; TRANSITION;
D O I
10.1016/j.cpc.2010.08.012
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this work we study the effects of geometrical frustration in square lattice which can be measured by the diagonal hopping integral In the framework of the Hubbard model we use quantum Monte Carlo method to calculate spin susceptibility and focus on magnetic fluctuations in this system We find that in two filling regions the effects of geometrical frustration are quite different As a measure of geometrical frustration between square and triangular lattices the diagonal hopping suppresses the anti-ferromagnetic fluctuation at half filling and enhances ferromagnetic fluctuation at 1 5 filling (C) 2010 Elsevier BV All rights reserved
引用
收藏
页码:74 / 76
页数:3
相关论文
共 50 条
  • [1] Frustration effects in rapidly rotating square and triangular optical lattices
    Polak, T. P.
    Kopec, T. K.
    [J]. PHYSICAL REVIEW A, 2009, 79 (06):
  • [2] Geometrical frustration in nonlinear photonic lattices
    Arevalo, E.
    Morales-Molina, L.
    [J]. PHYSICAL REVIEW A, 2018, 98 (02)
  • [3] NUMERICAL STUDY OF THE SQUARE ISING FRUSTRATION MODEL
    VANNIMENUS, J
    DESEZE, L
    [J]. JOURNAL OF APPLIED PHYSICS, 1979, 50 (11) : 7342 - 7344
  • [4] η-pairing on square and triangular lattices
    Misu, Yutaro
    Tamura, Shun
    Tanaka, Yukio
    Hoshino, Shintaro
    [J]. PHYSICAL REVIEW B, 2023, 107 (18)
  • [5] Unveiling square and triangular optical lattices: a comparative study
    Silva, Juarez G.
    Jesus-Silva, Alcenisio J.
    Alencar, Marcio A. R. C.
    Hickmann, Jandir M.
    Fonseca, Eduardo J. S.
    [J]. OPTICS LETTERS, 2014, 39 (04) : 949 - 952
  • [6] Diffuse scattering resulting from macromolecular frustration.
    Welberry, T. R.
    Heerdegen, A. P.
    Carr, P. D.
    [J]. ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2012, 68 : S63 - S63
  • [7] Geometrical spin frustration in Pr5Ni2Si3 composed of triangular crystal lattices
    Min, B. H.
    Hong, J. I.
    Kwon, Y. S.
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2014, 26 (32)
  • [8] Snakes in square, honeycomb and triangular lattices
    Kusdiantara, R.
    Susanto, H.
    [J]. NONLINEARITY, 2019, 32 (12) : 5170 - 5190
  • [9] Geometrical frustration and competing orders in the dipolar trimerized triangular lattice
    Hofhuis, Kevin
    Petersen, Charlotte F.
    Saccone, Michael
    Dhuey, Scott
    Kleibert, Armin
    van Dijken, Sebastiaan
    Farhan, Alan
    [J]. PHYSICAL REVIEW B, 2021, 104 (01)
  • [10] Local interactions and protein folding:: A model study on the square and triangular lattices
    Irbäck, A
    Sandelin, E
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1998, 108 (05): : 2245 - 2250