共 50 条
The tradeoffs between food supply and demand from the perspective of ecosystem service flows: A case study in the Pearl River Delta, China
被引:0
|作者:
Liu, Wei
[1
,2
]
Zhan, Jinyan
[1
]
Zhao, Fen
[3
]
Zhang, Fan
[4
,5
]
Teng, Yanmin
[1
]
Wang, Chao
[1
]
Chu, Xi
[1
]
Kumi, Michael Asiedu
[1
]
机构:
[1] Beijing Normal Univ, Sch Environm, State Key Lab Water Environm Simulat, Beijing 100875, Peoples R China
[2] Shandong Normal Univ, Coll Geog & Environm, Jinan 250358, Peoples R China
[3] Ludong Univ, Sch Resources & Environm Engn, Yantai 264025, Peoples R China
[4] Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Beijing 100101, Peoples R China
[5] Chinese Acad Sci, Ctr Chinese Agr Policy, Beijing 100101, Peoples R China
基金:
中国国家自然科学基金;
关键词:
Provisioning ecosystem service;
Supply-demand ratio;
Ecosystem service flow;
Road networks;
Scenario analysis;
Pearl river delta;
SPATIAL ACCESSIBILITY;
WATER SECURITY;
CAPACITY;
MODEL;
FRAMEWORK;
REGION;
AREA;
CARE;
D O I:
10.1016/j.jenvman.2021.113814
中图分类号:
X [环境科学、安全科学];
学科分类号:
08 ;
0830 ;
摘要:
Ecosystem service flows are a research topic of significant interest, and exploring this topic may mitigate the shortcomings related to the spatial mismatches between supply and demand in the current ecosystem services studies. The Pearl River Delta (PRD) experiences a serious spatial mismatch in ecosystem services in particular the food supply, between the supply areas (hilly areas) and demand areas (central areas). Therefore, this study focused on the PRD as a case study to analyze change trends of food supply-demand ratio (FSDR) at city level, and depict the spatial flow path within and between cities from the perspective of ecosystem service flow with different threshold distance, using an enhanced two-step floating catchment area accessibility method. The results showed that the food demand significantly exceeded the supply, the budget was 3.58 million tons and FSDR was 0.49 in 2015. There were large discrepancies in the FSDR at the city level before and after when considering the ecosystem service flows. The FSDR of cities in the central areas increased 0.1%-30%, due to the ecosystem service flow from the low hilly areas. As delivery distances increased, the size of food flow decreased within cities and increased among cities. This led to a significant decline in the population living in severe undersupplied areas (FSDR 0.1) and oversupplied areas (FSDR 1), and an increase in undersupplied areas (0.1<FSDR<0.9). Our findings indicate that local governments would benefit from enhancing connections between supply and demand areas to meet the food demand of big cities. This study offers a comprehensive and realistic understanding of the physical situation of ecosystem service consumption by human beings, and provides decisionmaking information for optimize land use allocation.
引用
收藏
页数:10
相关论文