Results in non-iterative MAP reconstruction for optical tomography

被引:0
|
作者
Cao, Guangzhi [1 ]
Bouman, Charles A. [1 ]
Webb, Kevin J. [1 ]
机构
[1] Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA
来源
COMPUTATIONAL IMAGING VI | 2008年 / 6814卷
关键词
MAP reconstruction; optical diffusion tomography; sparse matrix representation; lossy coding;
D O I
10.1117/12.779675
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Maximum a posteriori(MAP) estimation has been shown to be an effective method for reconstructing images from optical diffusion tomography data. However, one disadvantage of MAP reconstruction is that it typically requires the use of iterative methods which are computationally intensive. However, the direct reconstruction of MAP images is possible when the forward model is linear (or linearized) and the noise and image prior are assumed Gaussian. These non-iterative MAP reconstruction techniques only require the multiplication of an inverse matrix by a data vector to compute the reconstruction, but they depend on a combination of lossy source coding techniques and sparse matrix transforms to make the required matrix-vector product computation both computationally and memory efficient. In this paper, we show examples of how non-iterative MAP reconstruction methods can be used to dramatically reduce computation and storage for MAP reconstruction. Simulations of fluorescence optical diffusion tomography (FODT) measurements and corresponding reconstructions are used to demonstrate the potential value of these techniques. Numerical examples show the non-iterative MAP reconstruction can substantially reduce both storage and computation, as compared to traditional iterative reconstruction methods.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] A Non-Iterative Reconstruction Method for Bioluminescence Tomography
    Hrizi, Mourad
    FILOMAT, 2020, 34 (02) : 303 - 321
  • [2] A new non-iterative reconstruction method for the electrical impedance tomography problem
    Ferreira, A. D.
    Novotny, A. A.
    INVERSE PROBLEMS, 2017, 33 (03)
  • [3] Joint sparsity-driven non-iterative simultaneous reconstruction of absorption and scattering in diffuse optical tomography
    Lee, Okkyun
    Ye, Jong Chul
    OPTICS EXPRESS, 2013, 21 (22): : 26589 - 26604
  • [4] HARDWARE-FRIENDLY UNIVERSAL DEMOSAICK USING NON-ITERATIVE MAP RECONSTRUCTION
    Siddiqui, Hasib
    Atanassov, Kalin
    Goma, Sergio
    2016 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2016, : 1794 - 1798
  • [5] Convolutional neural network based non-iterative reconstruction for accelerating neutron tomography *
    Venkatakrishnan, Singanallur
    Ziabari, Amirkoushyar
    Hinkle, Jacob
    Needham, Andrew W.
    Warren, Jeffrey M.
    Bilheux, Hassina Z.
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2021, 2 (02):
  • [6] A non-iterative algorithm for electrical capacitance tomography
    Fraguela, A
    Oliveros, J
    Cervantes, L
    Morín, M
    Gómez, S
    REVISTA MEXICANA DE FISICA, 2005, 51 (03) : 236 - 242
  • [7] Non-iterative exact signal recovery in frequency domain optical coherence tomography
    Sekhar, S. Chandra
    Leitgeb, Rainer A.
    Villiger, Martin L.
    Bachmann, Adrian H.
    Blu, Thierry
    Unser, Michael
    2007 4TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING : MACRO TO NANO, VOLS 1-3, 2007, : 808 - +
  • [8] Non-Iterative Algorithm for Ultrasonic Computer Tomography
    Zhao, Zijian
    Liu, Boqiang
    JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS, 2016, 6 (07) : 1782 - 1786
  • [9] Non-Iterative Imaging Method for Electrical Resistance Tomography
    Calvano, Flavio
    Rubinacci, Guglielmo
    Tamburrino, Antonello
    NEURAL NETS WIRN09, 2009, 204 : 241 - 246
  • [10] Non-iterative numerical method for laterally superresolving Fourier domain optical coherence tomography
    Yasuno, Y
    Sugisaka, JI
    Sando, Y
    Nakamura, Y
    Makita, S
    Itoh, M
    Yatagai, T
    OPTICS EXPRESS, 2006, 14 (03): : 1006 - 1020