Optimal linear estimation fusion - Part VI: Sensor data compression

被引:0
|
作者
Zhang, KS [1 ]
Li, XR [1 ]
Zhang, P [1 ]
Li, HF [1 ]
机构
[1] Univ New Orleans, Dept Elect Engn, New Orleans, LA 70148 USA
关键词
estimation fusion; BLUE; MSE; sensor compression rule;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In many engineering applications, estimation accuracy can be improved by data from distributed sensors. Due to limited communication bandwidth and limited processing capability at the fusion center, it is crucial to compress these data for the final estimation at the fusion center. One way of accomplishing this is to reduce the dimension of the data with minimum or no loss of information. Based on the best linear unbiased estimation (BLUE) fusion results obtained in the previous parts of this series, in this paper we present optimal rules for compressing data at each local sensor to an allowable size (i.e., dimension) such that the fused estimate is optimal. We show that without any performance deterioration, all sensor data can be compressed to a dimension not larger than that of the estimatee (i.e., the quantity to be estimated). For some simple cases, these optimal compression rules are given analytically; for the general case, they can be found numerically by an algorithm proposed here. Supporting simulation results are provided.
引用
收藏
页码:221 / 228
页数:8
相关论文
共 50 条
  • [1] Optimal sensor data linear compression in multisensor estimation fusion
    Zhu, YM
    Song, EB
    Zhou, J
    You, ZS
    42ND IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-6, PROCEEDINGS, 2003, : 5807 - 5812
  • [2] Optimal sensor data quantization for best linear unbiased estimation fusion
    Zhang, KS
    Li, XR
    2004 43RD IEEE CONFERENCE ON DECISION AND CONTROL (CDC), VOLS 1-5, 2004, : 2656 - 2661
  • [3] Optimal linear estimation and data fusion
    Elliott, RJ
    Van der Hoek, J
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2006, 51 (04) : 686 - 689
  • [4] Optimal linear estimation fusion - Part V: Relationships
    Li, XR
    Zhang, KS
    Juan, Z
    Zhu, YM
    PROCEEDINGS OF THE FIFTH INTERNATIONAL CONFERENCE ON INFORMATION FUSION, VOL I, 2002, : 497 - 504
  • [5] Optimal linear estimation fusion - Part I: Unified fusion rules
    Li, XR
    Zhu, YM
    Wang, J
    Han, CZ
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2003, 49 (09) : 2192 - 2208
  • [6] Optimal linear estimation fusion - Part VII dynamic systems
    Li, XR
    FUSION 2003: PROCEEDINGS OF THE SIXTH INTERNATIONAL CONFERENCE OF INFORMATION FUSION, VOLS 1 AND 2, 2003, : 455 - 462
  • [7] Optimal dimensionality reduction of sensor data in multisensor estimation fusion
    Zhu, YM
    Song, EB
    Zhou, J
    You, ZS
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2005, 53 (05) : 1631 - 1639
  • [8] Lossless Linear Transformation of Sensor Data for Distributed Estimation Fusion
    Duan, Zhansheng
    Li, X. Rong
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2011, 59 (01) : 362 - 372
  • [9] Optimal estimation of sensor biases for asynchronous multi-sensor data fusion
    Wenqiang Pu
    Ya-Feng Liu
    Junkun Yan
    Hongwei Liu
    Zhi-Quan Luo
    Mathematical Programming, 2018, 170 : 357 - 386
  • [10] Optimal estimation of sensor biases for asynchronous multi-sensor data fusion
    Pu, Wenqiang
    Liu, Ya-Feng
    Yan, Junkun
    Liu, Hongwei
    Luo, Zhi-Quan
    MATHEMATICAL PROGRAMMING, 2018, 170 (01) : 357 - 386