Generalized antiferromagnetic Heisenberg spin ladders

被引:2
|
作者
Tsai, YC [1 ]
Hu, CK
机构
[1] Natl Chung Cheng Univ, Dept Phys, Chiayi, Taiwan
[2] Acad Sinica, Inst Phys, Taipei, Taiwan
关键词
antiferromagnets; spin ladders;
D O I
10.1016/S0921-4526(01)00592-0
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We utilize the path-integral technique to derive the non-linear Sigma model (NL sigmaM) for generalized antiferromagnetic spin-ladder systems on the square lattice with diagonal (next-nearest neighbor) interactions in addition to the nearest neighbor interaction. The model Hamiltonian is: H = Sigma (n)(a=1)' Sigma (1) J(a)S(a(i))(.)S(a)(i+1) + J ' S-a,a+1(a)(i)S-.(a+1)(i) + K(a,a+1)Sa(i) (.) Sa+1(i+1) + Ma,a+1Sa(i+1) (.) S-a(i+1) (.) S-a(i). The topological term of the NL sigmaM is absent for the spin-s ladder with an even number of legs and is equal to 2 pis for the ladder with an odd number of legs. The spin wave velocity is s[Sigma (a)(J(a) - M-a,M-a+1 - K-a,K-a+1)/Sigma L-b,c(b,c)-1](1/2) where L-a,L-b = 4J(a) + J ' (a,a+1) + J ' (a-1) - M-a,M-a+1- M-a,M-a-1-K-a,K-a+1-K-a,K-a-1 when a = b, and L-a,L-b = J ' (a,b) + K-a,K-b + M-a,M-b, when /a - b/ = 1. The spin gaps are predicted for spin ladders with an even number of chains. We also consider a two-leg ladder with spin (s) over tilde and s, in which diagonal interactions occur only in the even (or odd) cells. The Berry phase is found to be dependent on the coupling constants. The expressions of the spin-wave velocity and spin gap are also given for even-leg ladders. The operator approach to the generalized spin-ladder problem is also presented. Finally we address the finite-size NL sigmaM treatment of this system. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:21 / 37
页数:17
相关论文
共 50 条
  • [2] Spinless fermions versus spin waves in describing antiferromagnetic Heisenberg ladders
    Hori, H
    Yamamoto, S
    [J]. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2004, 272 : 269 - 270
  • [3] Magnetization curves of antiferromagnetic Heisenberg spin-1/2 ladders
    Cabra, DC
    Honecker, A
    Pujol, P
    [J]. PHYSICAL REVIEW LETTERS, 1997, 79 (25) : 5126 - 5129
  • [4] Antiferromagnetic Heisenberg ladders in staggered magnetic field
    Zhao, J
    Wang, XQ
    Xiang, T
    Su, ZB
    Yu, L
    Lou, JZ
    Chen, CF
    [J]. PHYSICAL REVIEW B, 2006, 73 (01)
  • [5] Fermionic description of spin-gap states of antiferromagnetic Heisenberg ladders in a magnetic field
    Hori, H
    Yamamoto, S
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2002, 71 (06) : 1607 - 1608
  • [6] STRONG-COUPLING EXPANSIONS FOR ANTIFERROMAGNETIC HEISENBERG SPIN-ONE-HALF LADDERS
    REIGROTZKI, M
    TSUNETSUGU, H
    RICE, TM
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 1994, 6 (43) : 9235 - 9245
  • [7] EXCITATION-SPECTRA OF GENERALIZED ANTIFERROMAGNETIC HEISENBERG SPIN CHAINS
    PARKINSON, JB
    BONNER, JC
    [J]. JOURNAL OF APPLIED PHYSICS, 1988, 63 (08) : 4160 - 4160
  • [8] EXCITATION SPECTRUM OF HEISENBERG SPIN LADDERS
    BARNES, T
    DAGOTTO, E
    RIERA, J
    SWANSON, ES
    [J]. PHYSICAL REVIEW B, 1993, 47 (06) : 3196 - 3203
  • [9] Dynamic spin response for Heisenberg ladders
    Piekarewicz, J
    Shepard, JR
    [J]. PHYSICAL REVIEW B, 1998, 57 (17): : 10260 - 10263
  • [10] Dynamic spin response for Heisenberg ladders
    [J]. Phys Rev B, 17 (10 260):