The anticommutator spin algebra, its representations and quantum group invariance

被引:8
|
作者
Arik, M [1 ]
Kayserilioglu, U [1 ]
机构
[1] Bogazici Univ, Dept Phys, TR-80815 Bebek, Istanbul, Turkey
来源
关键词
spin; Jordan algebra; quantum group;
D O I
10.1142/S0217751X03015933
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
We define a 3-generator algebra obtained by replacing the commutators with anticommutators in the defining relations of the angular momentum algebra. We show that integer spin representations are in one to one correspondence with those of the angular momentum algebra. The half-integer spin representations, on the other hand, split into two representations of dimension j + 1/2. The anticommutator spin algebra is invariant under the action of the quantum group SOq(3) with q = -1.
引用
收藏
页码:5039 / 5045
页数:7
相关论文
共 50 条