Horseshoes in hurricanes

被引:23
|
作者
du Toit, Philip C. [1 ]
Marsden, Jerrold E. [2 ]
机构
[1] Numerica Corp, Loveland, CO 80538 USA
[2] CALTECH, Pasadena, CA 91125 USA
关键词
Finite time Lyapunov exponents; Lagrangian coherent structures; homoclinic tangles; hurricanes; mesoscale ocean eddies; transport; mixing; LAGRANGIAN COHERENT STRUCTURES; INVARIANT-MANIFOLDS; TRANSPORT; OCEAN; DYNAMICS; MODEL;
D O I
10.1007/s11784-010-0028-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The method of using Finite Time Liapunov Exponents (FTLE) to extract Lagrangian Coherent Structures (LCS) in aperiodic flows, as originally developed by Haller, is applied to geophysical flows. In this approach, the LCS are identified as surfaces of greatest separation that parse the flow into regions with different dynamical behavior. In this way, the LCS reveal the underlying skeleton of turbulence. The time-dependence of the LCS provides insight into the mechanisms by which fluid is transported from one region to another. Of especial interest in this study is the utility with which the FTLE-LCS method can be used to reveal homoclinic and horseshoe dynamics in aperiodic flows. The FTLE-LCS method is applied to turbulent flow in hurricanes and reveals LCS that delineate sharp boundaries to a storm. Moreover, intersections of the LCS define lobes that mediate transport into and out of a storm through the action of homoclinic lobe dynamics. Using the FTLE-LCS method, the same homoclinic structures are seen to be a dominant transport mechanism in the Global Ocean, and provide insights into the role of mesoscale eddies in enhancing lateral mixing.
引用
收藏
页码:351 / 384
页数:34
相关论文
共 50 条
  • [1] Horseshoes in hurricanes
    Philip C. du Toit
    Jerrold E. Marsden
    [J]. Journal of Fixed Point Theory and Applications, 2010, 7 : 351 - 384
  • [2] horseshoes
    Best, B. J.
    [J]. NORTH AMERICAN REVIEW, 2008, 293 (01): : 39 - 39
  • [3] 'HORSESHOES'
    BOTTOMS, D
    [J]. POETRY, 1996, 167 (05) : 277 - 277
  • [4] 'HORSESHOES'
    ANTONYCH, B
    [J]. MUNDUS ARTIUM, 1975, 8 (02): : 123 - 123
  • [5] 'Horseshoes'
    Straus, MJ
    [J]. KENYON REVIEW, 1999, 21 (01): : 141 - 141
  • [6] Metric horseshoes
    Yang, XS
    [J]. CHAOS SOLITONS & FRACTALS, 2004, 20 (05) : 1149 - 1156
  • [7] Topological horseshoes
    Kennedy, J
    Yorke, JA
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 353 (06) : 2513 - 2530
  • [8] HORSESHOES BY THE SCORE
    SHAKESPEARE, J
    [J]. METALLURGIA, 1980, 47 (03): : 142 - 142
  • [9] THE CREATION OF HORSESHOES
    HALL, T
    [J]. NONLINEARITY, 1994, 7 (03) : 861 - 924
  • [10] Old horseshoes
    Moore-Colyer, RJ
    [J]. AGRICULTURAL HISTORY REVIEW, 1999, 47 : 124 - 124