SEMIPARAMETRIC MAXIMUM LIKELIHOOD INFERENCE FOR TRUNCATED OR BIASED-SAMPLING DATA

被引:17
|
作者
Liu, Hao [1 ]
Ning, Jing [2 ]
Qin, Jing [3 ]
Shen, Yu [2 ]
机构
[1] Baylor Coll Med, Div Biostat, Dan L Duncan Canc Ctr, Houston, TX 77030 USA
[2] Univ Texas MD Anderson Canc Ctr, Dept Biostat, Houston, TX 77030 USA
[3] NIAID, Biostat Res Branch, NIH, 9000 Rockville Pike, Bethesda, MD 20892 USA
基金
美国国家卫生研究院; 英国医学研究理事会;
关键词
Biased sampling; length bias data; truncated and right censored survival data; PREVALENT COHORT DATA; SELECTION BIAS; SURVIVAL-DATA; NONPARAMETRIC-ESTIMATION; REGRESSION-ANALYSIS; HAZARDS REGRESSION; STATISTICAL-MODELS; ASYMPTOTIC THEORY; FRAILTY MODEL; CENSORED-DATA;
D O I
10.5705/ss.2014.094
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Sample selection bias has long been recognized in many fields including clinical trials, epidemiology studies, genome-wide association studies, and wildlife management. This paper investigates the maximum likelihood estimation for censored survival data with selection bias under the Cox regression models where the selection process is modeled parametrically. A novel expectation-maximization algorithm is proposed and shown to have considerable computational advantages. Rigorous asymptotic properties of the estimator are established. Extensive simulation studies and a data analysis are conducted to investigate the performance of the proposed estimation procedure.
引用
收藏
页码:1087 / 1115
页数:29
相关论文
共 50 条