A Kalman Filter for Online Calibration of Optimal Controllers

被引:2
|
作者
Menner, Marcel [1 ]
Berntorp, Karl [1 ]
Di Cairano, Stefano [1 ]
机构
[1] Mitsubishi Elect Res Labs MERL, Cambridge, MA 02139 USA
关键词
D O I
10.1109/CCTA48906.2021.9658684
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes an approach for the calibration of the cost function of optimization-based controllers. The approach uses a Kalman filter that estimates the cost function parameters using data of closed-loop system operation. It adapts the parameters online and robustly, provides safety guarantees, is computationally efficient, has low data storage requirements, and is easy to implement making it appealing for many real-time applications. The approach provides a data-efficient alternative to Bayesian optimization and an automated alternative to learning from demonstrations. Simulation results show that the approach is able to learn cost function parameters quickly (approximately 95% faster than Bayesian optimization), is able to adapt the parameters to compensate for disturbances (approximately 25% improvement on tracking precision), and is robust to noise.
引用
收藏
页码:441 / 446
页数:6
相关论文
共 50 条
  • [1] Study of Online Sensor Calibration Monitoring Using a Kalman Filter
    Kim, Hyun Su
    Kim, Tae Yun
    Chai, Jang-Bom
    TRANSACTIONS OF THE KOREAN SOCIETY OF MECHANICAL ENGINEERS A, 2018, 42 (04) : 301 - 309
  • [2] Kalman Filter Based Optimal Controllers in Free Space Optics Communication
    Li, Zhaokun
    Zhao, Xiaohui
    JOURNAL OF THE OPTICAL SOCIETY OF KOREA, 2016, 20 (03) : 368 - 380
  • [3] Three-Axial Accelerometer Calibration Using Kalman Filter Covariance Matrix for Online Estimation of Optimal Sensor Orientation
    Beravs, Tadej
    Podobnik, Janez
    Munih, Marko
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2012, 61 (09) : 2501 - 2511
  • [4] Stereo MSCKF with Online Extrinsic Calibration using Invariant Extended Kalman Filter
    Auh, Eugene
    Moon, Hyungpil
    2021 18TH INTERNATIONAL CONFERENCE ON UBIQUITOUS ROBOTS (UR), 2021, : 579 - 584
  • [5] Optimal Decentralized Kalman Filter
    Oruc, S.
    Sijs, J.
    van den Bosch, P. P. J.
    MED: 2009 17TH MEDITERRANEAN CONFERENCE ON CONTROL & AUTOMATION, VOLS 1-3, 2009, : 803 - 808
  • [6] An Optimal Adaptive Kalman Filter
    Yuanxi Yang
    Weiguang Gao
    Journal of Geodesy, 2006, 80 : 177 - 183
  • [7] An optimal adaptive Kalman filter
    Yang, Yuanxi
    Gao, Weiguang
    JOURNAL OF GEODESY, 2006, 80 (04) : 177 - 183
  • [8] Optimal distributed Kalman filter
    Assimakis, ND
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 47 (08) : 5367 - 5378
  • [9] Optimal decentralized Kalman filter and Lainiotis filter
    Assimakis, Nicholas
    Adam, Maria
    Koziri, Maria
    Voliotis, Stamatis
    Asimakis, Konstantinos
    DIGITAL SIGNAL PROCESSING, 2013, 23 (01) : 442 - 452
  • [10] An Online Performance Index for the Kalman Filter
    Xue, Wei
    Luan, Xiaoli
    Zhao, Shunyi
    Liu, Fei
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71