An investigation into the range dependence of target delineation strategies for stereotactic lung radiotherapy

被引:4
|
作者
Mohatt, Dennis J. [1 ]
Keim, John M. [2 ]
Greene, Mathew C. [2 ]
Patel-Yadav, Ami [2 ]
Gomez, Jorge A. [2 ]
Malhotra, Harish K. [1 ,2 ]
机构
[1] Univ Buffalo, Dept Physiol & Biophys, Buffalo, NY 14214 USA
[2] Roswell Pk Canc Inst, Dept Radiat Med, Buffalo, NY 14293 USA
来源
RADIATION ONCOLOGY | 2017年 / 12卷
关键词
Stereotactic body radiotherapy; Four dimensional computed tomography; Average intensity projection; Maximum intensity projection; Dice similarity coefficient; BODY RADIATION-THERAPY; COMPUTED-TOMOGRAPHY; MAXIMUM; CANCER; VALIDATION; IMAGES; MOTION; SBRT; MIP;
D O I
10.1186/s13014-017-0907-8
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background: The "gold standard" approach for defining an internal target volume (ITV) is using 10 gross tumor volume (GTV) phases delineated over the course of one respiratory cycle. However, different sites have adopted several alternative techniques which compress all temporal information into one CT image set to optimize work flow efficiency. The purpose of this study is to evaluate alternative target segmentation strategies with respect to the 10 phase gold standard. Methods: A Quasar respiratory motion phantom was employed to simulate lung tumor movement. Utilizing 4DCT imaging, a gold standard ITV was created by merging 10 GTV time resolved image sets. Four alternative planed ITV's were compared using free breathing (FB), average intensity projection (AIP), maximum image projection (MIP), and an augmented FB (FB-Aug) set where the ITV included structures from FB plus max-inhale/exhale image sets. Statistical analysis was performed using the Dice similarity coefficient (DSC). Seventeen patients previously treated for lung SBRT were also included in this retroactive study. Results: PTV's derived from the FB image set are the least comparable with the 10 phase benchmark (DSC = 0.740-0. 408). For phantom target motion greater than 1 cm, FB and AIP ITV delineation exceeded the 10 phase benchmark by 2% or greater, whereas MIP target segmentation was found to be consistently within 2% agreement with the gold standard (DSC > 0.878). Clinically, however, the FB-Aug method proved to be most favorable for tumor movement up to 2 cm (DSC = 0.881 +/- 0.056). Conclusion: Our results indicate the range of tumor motion dictates the accuracy of the defined PTV with respect to the gold standard. When considering delineation efficiency relative to the 10 phase benchmark, the FB-Aug technique presents a potentially proficient and viable clinical alternative. Among various techniques used for image segmentation, a judicious balance between accuracy and efficiency is inherently required to account for tumor trajectory, range and rate of mobility.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] An investigation into the range dependence of target delineation strategies for stereotactic lung radiotherapy
    Dennis J. Mohatt
    John M. Keim
    Mathew C. Greene
    Ami Patel-Yadav
    Jorge A. Gomez
    Harish K. Malhotra
    [J]. Radiation Oncology, 12
  • [2] Target delineation uncertainty in stereotactic body radiotherapy for peripheral early lung cancer
    Sonke, Jan-jakob
    Duppen, Joop
    Belderbos, Jose
    Guckenberger, Matthias
    Hope, Andrew
    Grills, Inga
    [J]. JOURNAL OF THORACIC ONCOLOGY, 2009, 4 (09) : S531 - S532
  • [3] Inter-observer variation in target delineation of stage I lung cancer for stereotactic radiotherapy
    Sakamoto, M
    Nagata, Y
    Takayama, K
    Mizowaki, T
    Aoki, T
    Sakamoto, T
    Hiraoka, M
    [J]. INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2005, 63 (02): : S411 - S412
  • [4] Investigation of uncertainty in internal target volume definition for lung stereotactic body radiotherapy
    Nakanishi, Daiki
    Oita, Masataka
    Fukunaga, Jun-Ichi
    Hirose, Taka-Aki
    Yoshitake, Tadamasa
    Sasaki, Motoharu
    [J]. RADIOLOGICAL PHYSICS AND TECHNOLOGY, 2023, 16 (04) : 497 - 505
  • [5] Investigation of uncertainty in internal target volume definition for lung stereotactic body radiotherapy
    Daiki Nakanishi
    Masataka Oita
    Jun-Ichi Fukunaga
    Taka-Aki Hirose
    Tadamasa Yoshitake
    Motoharu Sasaki
    [J]. Radiological Physics and Technology, 2023, 16 (4) : 497 - 505
  • [6] Interobserver delineation variation in lung tumour stereotactic body radiotherapy
    Persson, G. F.
    Nygaard, D. E.
    Hollensen, C.
    af Rosenschold, P. Munck
    Mouritsen, L. S.
    Due, A. K.
    Berthelsen, A. K.
    Nyman, J.
    Markova, E.
    Roed, A. P.
    Roed, H.
    Korreman, S.
    Specht, L.
    [J]. BRITISH JOURNAL OF RADIOLOGY, 2012, 85 (1017): : E654 - E660
  • [7] The delineation of target volumes for radiotherapy of lung cancer patients
    Vorwerk, Hilke
    Beckmann, Gabriele
    Bremer, Michael
    Degen, Maria
    Dietl, Barbara
    Fietkau, Rainer
    Gsaenger, Tammo
    Hermann, Robert Michael
    Herrmann, Markus Karl Alfred
    Hoeller, Ulrike
    van Kampen, Michael
    Koerber, Wolfgang
    Maier, Burkhard
    Martin, Thomas
    Metz, Michael
    Richter, Ronald
    Siekmeyer, Birgit
    Steder, Martin
    Wagner, Daniela
    Hess, Clemens Friedrich
    Weiss, Elisabeth
    Christiansen, Hans
    [J]. RADIOTHERAPY AND ONCOLOGY, 2009, 91 (03) : 455 - 460
  • [8] Target Delineation, Reposition, and Dose Delivering Accuracies in CBCT-Guided Stereotactic Radiotherapy of Small Lung Tumors
    Li, S.
    Kuritzky, N.
    Chan, P.
    Tsai, J.
    Zhang, X.
    Morgan, P.
    Micaily, B.
    Miyamoto, C.
    [J]. MEDICAL PHYSICS, 2008, 35 (06) : 2948 - +
  • [9] Complexities of lung stereotactic radiotherapy planning target volumes
    Dawood, Omar
    Chang, Joe Y.
    Balter, Peter A.
    Komaki, Ritsuko
    Roth, Jack A.
    [J]. JOURNAL OF THORACIC ONCOLOGY, 2009, 4 (09) : S941 - S942
  • [10] Inter-observer variability in target delineation for brain metastases in stereotactic radiotherapy
    Di Biase, S.
    Patani, F.
    Fasciolo, D.
    Rosa, C.
    Di Carlo, C.
    Allajbej, A.
    Gasparini, L.
    Delli Pizzi, A.
    Trignani, M.
    Caravatta, L.
    Genovesi, D.
    [J]. RADIOTHERAPY AND ONCOLOGY, 2019, 133 : S682 - S682