The Complexity Status of Problems Related to Sparsest Cuts

被引:0
|
作者
Bonsma, Paul [1 ]
Broersma, Hajo [2 ]
Patel, Viresh [2 ]
Pyatkin, Artem [2 ]
机构
[1] Humboldt Univ, Dept Comp Sci, Unter den Linden 6, D-10099 Berlin, Germany
[2] Univ Durham, Sci Labs, Sch Engn & Comp Sci, Durham DH1 3LE, England
来源
COMBINATORIAL ALGORITHMS | 2011年 / 6460卷
基金
英国工程与自然科学研究理事会;
关键词
NP-hardness; sparsest cut; densest cut; MSSC; bounded treewidth;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Given an undirected graph G = (V, E) with a capacity function w : E -> Z(+) on the edges, the sparsest; cut problem is to find a vertex subset S subset of V minimizing Sigma(e epsilon E(S,V\S)) w(e)/(vertical bar S vertical bar vertical bar\S). This problem is NP-hard. The proof can be found in [16]. In the case of unit capacities (i. e. if w(e) = 1 for every e is an element of E) the problem is to minimize vertical bar E(S, V \ S)vertical bar/(vertical bar S vertical bar vertical bar V \ S vertical bar) over all subsets S subset of V. While this variant of the sparsest cut problem is often assumed to be NP-hard, this note contains the first proof of this fact. We also prove that the problem is polynomially solvable for graphs of bounded treewidth.
引用
收藏
页码:125 / +
页数:3
相关论文
共 50 条