Expanding the CRISPR/Cas genome-editing scope in Xenopus tropicalis

被引:0
|
作者
Shi, Zhaoying [1 ,2 ]
Jiang, Hao [2 ]
Liu, Guanghui [2 ]
Shi, Songyuan [2 ]
Zhang, Xuan [2 ]
Chen, Yonglong [2 ]
机构
[1] Harbin Inst Technol, Harbin 150001, Heilongjiang, Peoples R China
[2] Southern Univ Sci & Technol, Sch Life Sci, Guangdong Prov Key Lab Cell Microenvironm & Dis R, Dept Biol,Shenzhen Key Lab Cell Microenvironm, Shenzhen 518055, Guangdong, Peoples R China
来源
CELL AND BIOSCIENCE | 2022年 / 12卷 / 01期
关键词
SaCas9; KKH SaCas9; LbCas12a; Fragment deletion; Xenopus tropicalis; CRISPR-CAS9; CAS9; ENDONUCLEASE; ZEBRAFISH;
D O I
10.1186/s13578-022-00841-3
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Background The true diploid frog, Xenopus tropicalis (X. tropicalis) is an excellent genetic model organism. To date, the CRISPR/Cas-mediated genome editing methods established in this species are mostly based on SpCas9 that requires the stringent NGG protospacer-adjacent motif (PAM) for target recognition, which limits its genome editing scope. Thus, it is highly desirable to circumvent this limitation. Results Through one-cell stage injection of Cas/gRNAs into X. tropicalis embryos, we evaluated the mutagenic efficiency of 8 different Cas variants using T7EI assay, Sanger DNA sequencing, or deep sequencing. Our data indicate that SaCas9 and KKH SaCas9 are highly effective in frogs, which could be used for direct phenotyping in G0 embryos. In contrast, VQR Cas9, xCas9 3.7, SpG Cas9, and SpRY Cas9 were ineffective in X. tropicalis embryos and no activity was detected for iSpyMac Cas9. We also found that LbCas12a/crRNA RNP complexes with paired crRNAs efficiently induced small fragment deletions in X. tropicalis embryos. Conclusion SaCas9 and KKH SaCas9 are robust genome editing tools in X. tropicalis embryos. LbCas12a/crRNA RNP complexes are useful for inducing DNA fragment deletions in frog embryos. These tools expand the CRISPR/Cas genome editing scope in X. tropicalis and increase the flexibility for various genome editing applications in frogs.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Expanding the CRISPR/Cas genome-editing scope in Xenopus tropicalis
    Zhaoying Shi
    Hao Jiang
    Guanghui Liu
    Songyuan Shi
    Xuan Zhang
    Yonglong Chen
    [J]. Cell & Bioscience, 12
  • [2] Expanding the genome-editing range of CRISPR-Cas9 in rice
    Xu, Xiuling
    [J]. NATIONAL SCIENCE REVIEW, 2018, 5 (01) : 6 - 6
  • [3] The CRISPR/Cas Genome-Editing Tool: Application in Improvement of Crops
    Khatodia, Surender
    Bhatotia, Kirti
    Passricha, Nishat
    Khurana, S. M. P.
    Tuteja, Narendra
    [J]. FRONTIERS IN PLANT SCIENCE, 2016, 7
  • [4] Cas9-Based Genome Editing in Xenopus tropicalis
    Nakayama, Takuya
    Blitz, Ira L.
    Fish, Margaret B.
    Odeleye, Akinleye O.
    Manohar, Sumanth
    Cho, Ken W. Y.
    Grainger, Robert M.
    [J]. USE OF CRISPR/CAS9, ZFNS, AND TALENS IN GENERATING SITE-SPECIFIC GENOME ALTERATIONS, 2014, 546 : 355 - 375
  • [5] CRISPR/Cas as a Genome-Editing Technique in Fruit Tree Breeding
    Martin-Valmaseda, Marina
    Devin, Sama Rahimi
    Ortuno-Hernandez, German
    Perez-Caselles, Cristian
    Mahdavi, Sayyed Mohammad Ehsan
    Bujdoso, Geza
    Salazar, Juan Alfonso
    Martinez-Gomez, Pedro
    Alburquerque, Nuria
    [J]. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (23)
  • [6] A CRISPR genome-editing tool
    Darren J. Burgess
    [J]. Nature Reviews Genetics, 2013, 14 : 81 - 81
  • [7] Expanding the targeting scope of CRISPR/Cas9-mediated genome editing by Cas9 variants in Brassica
    Li, Wenjing
    Li, Xuan
    Wang, Chunyang
    Huo, Guanzhong
    Zhang, Xinru
    Yu, Jintai
    Yu, Xiaoxiao
    Li, Jing
    Zhang, Chao
    Zhao, Jianjun
    Li, Yan
    Li, Jun
    [J]. ABIOTECH, 2024, 5 (02) : 202 - 208
  • [8] CRISPR-Cas9 system: A genome-editing tool with endless possibilities
    Tyagi, Swati
    Kumar, Robin
    Das, Aparup
    Won, So Youn
    Shukla, Pratyoosh
    [J]. JOURNAL OF BIOTECHNOLOGY, 2020, 319 : 36 - 53
  • [9] Modulating CRISPR/Cas9 genome-editing activity by small molecules
    Chen, Siwei
    Chen, Deng
    Liu, Bin
    Haisma, Hidde J.
    [J]. DRUG DISCOVERY TODAY, 2022, 27 (04) : 951 - 966
  • [10] TECHNOLOGY A CRISPR genome-editing tool
    Burgess, Darren J.
    [J]. NATURE REVIEWS GENETICS, 2013, 14 (02) : 80 - 81