Unsteady performance of a pemfc system including autothermal methane reforming

被引:0
|
作者
Beil, Alexander [1 ]
Seume, Joerg R. [1 ]
机构
[1] Leibniz Univ Hannover, Inst Turbomachinery & Fluid Dynam, D-30167 Hannover, Germany
关键词
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
A zero-dimensional, dynamic model of a PEM fuel cell with an autothermal methane reformer section is generated. In the model, reformer consists of three reactors for the autothermal steam reforming, the water gas shift, and the selective oxidation. Physical approaches are favored over empirical modeling equations in order to describe the relevant transport phenomena. Thus, in spite of the low order modeling, only physical parameters are required for the input. The aim of the model is the calculation of the cell voltage for a given set of geometrical and thermodynamic data including the current density. The fuel cell water management is modeled with equations for the water transport through the membrane by electro-osmotic drag and diffusion as well as the membrane humidity. Flooding due to liquid water content and dehydration of the membrane is simulated dynamically with this model. These critical conditions are identified by the cell voltage. Due to pressure feedback, dynamic simulations show partial pressure fluctuation in the reformer reactors caused by load changes of the fuel cell.
引用
收藏
页码:13 / 24
页数:12
相关论文
共 50 条
  • [1] Study of methane autothermal reforming catalyst
    Ni Changjun
    Pan Liwei
    Yuan Thongshan
    Cao Lei
    Wang Shudong
    [J]. JOURNAL OF RARE EARTHS, 2014, 32 (02) : 184 - 188
  • [2] Study of methane autothermal reforming catalyst
    倪长军
    潘立卫
    袁中山
    曹磊
    王树东
    [J]. Journal of Rare Earths, 2014, 32 (02) : 184 - 188
  • [3] An annular reactor for direct methane autothermal reforming
    Kuai, Pingyu
    Pan, Yunxiang
    Li, Weibin
    Liu, Huimin
    Feng, Zhiwu
    [J]. CHEMICAL PAPERS, 2021, 75 (09): : 4803 - 4816
  • [4] An annular reactor for direct methane autothermal reforming
    Pingyu Kuai
    Yunxiang Pan
    Weibin Li
    Huimin Liu
    Zhiwu Feng
    [J]. Chemical Papers, 2021, 75 : 4803 - 4816
  • [5] Microchannel Autothermal Reforming of Methane to Synthesis Gas
    Mustafa Karakaya
    Z. Ilsen Onsan
    Ahmet K. Avci
    [J]. Topics in Catalysis, 2013, 56 : 1716 - 1723
  • [6] Microchannel Autothermal Reforming of Methane to Synthesis Gas
    Karakaya, Mustafa
    Onsan, Z. Ilsen
    Avci, Ahmet K.
    [J]. TOPICS IN CATALYSIS, 2013, 56 (18-20) : 1716 - 1723
  • [7] A thermodynamic view of partial oxidation, steam, reforming, and autothermal reforming on methane
    Chan, SH
    Ding, OL
    Hoang, DL
    [J]. INTERNATIONAL JOURNAL OF GREEN ENERGY, 2004, 1 (02) : 265 - 278
  • [8] Development of Supported Ni Catalysts for Autothermal Reforming of Methane
    Matus, E., V
    Vasil'ev, S. D.
    Ismagilov, I. Z.
    Ushakov, V. A.
    Kerzhentsev, M. A.
    Ismagilov, Z. R.
    [J]. CHEMISTRY FOR SUSTAINABLE DEVELOPMENT, 2020, 28 (04): : 403 - 411
  • [9] Autothermal reforming of methane to synthesis gas: Modeling and simulation
    Nezhad, M. Zahedi
    Rowshanzamir, S.
    Eikani, M. H.
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (03) : 1292 - 1300
  • [10] Autothermal reforming of methane gas - Modelling and experimental validation
    Ding, O. L.
    Chan, S. H.
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2008, 33 (02) : 633 - 643