Comparative energetic studies on liquid organic hydrogen carrier: A net energy analysis

被引:34
|
作者
Lee, Sanghun [1 ,5 ]
Kim, Taehong [1 ]
Han, Gwangwoo [1 ,2 ]
Kang, Sungmin [1 ,3 ]
Yoo, Young-Sung [4 ]
Jeon, Sang-Yun [4 ]
Bae, Joongmyeon [1 ]
机构
[1] Korea Adv Inst Sci & Technol KAIST, Dept Mech Engn, 291 Daehak Ro, Daejeon 305701, South Korea
[2] Korea Inst Energy Res, Renewable Heat Integrat Lab, 152 Gajeong Ro, Daejeon 34129, South Korea
[3] Korea Inst Energy Res, Ulsan Adv Energy Technol R&D Ctr, 25 Techno Saneop Ro 55Beon-gil, Ulsan 44776, South Korea
[4] KEPCO Res Inst, Renewable & ESS Grp, Energy New Business Lab, Daejeon 34056, South Korea
[5] Natl Renewable Energy Lab, Chem & Nanosci Ctr, 15013 Denver West Pkwy, Golden, CO 80401 USA
来源
关键词
Net energy analysis; Hydrogen; Liquid organic hydrogen carrier; Energy storage; FUEL-CELL; PERHYDRO-DIBENZYLTOLUENE; AMMONIA-SYNTHESIS; STORAGE; DEHYDROGENATION; SYSTEM; PRESSURE; LOHC; SOLAR; OXIDE;
D O I
10.1016/j.rser.2021.111447
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Energy storage have attracted attention to compensate for the mismatches of electricity supply and demand caused by renewable energies. A regenerative hydrogen fuel cell (RHFC) system composed of an electrolyzer, hydrogen storage, and fuel cell is a promising large capacity energy storage technology. A liquid organic hydrogen carrier (LOHC) is considered for hydrogen storage technology because of its advantages of good safety, easy handling, and high storage density. In this original research, a comparative energetic study on LOHC and other hydrogen storage technologies was conducted using net energy analysis to quantitatively compare various hydrogen storage technologies. First, the basic RHFC system was modeled by a 0-dimensional simulation, and the system efficiency was analyzed. Then, a net energy analysis was conducted by evaluating energy stored on investment (ESOIe) values. The RHFC system with LOHC showed a higher ESOIe of 53 for weekly (<100 h) and 18 for monthly (<1000 h) energy storage than other energy storage technologies due to the low embodied energy cost of LOHC materials. Based on the analysis, the RHFC system with LOHC was concluded to be an attractive option for weekly and monthly energy storage of the both wind and solar power.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Energy efficiency and carbon emission of hydrogen transportation chain in the mode of liquid hydrogen and liquid organic hydrogen carrier
    Lin W.
    Liu H.
    Xu J.
    Natural Gas Industry, 2023, 43 (02) : 131 - 138
  • [2] Potential Deployment and Integration of Liquid Organic Hydrogen Carrier Technology within Different Industries Liquid organic hydrogen carrier technology to support on demand hydrogen supply and energy storage
    Southall, Emma
    Lukashuk, Liliana
    JOHNSON MATTHEY TECHNOLOGY REVIEW, 2022, 66 (03): : 259 - 270
  • [3] Recent progress and perspectives of liquid organic hydrogen carrier electrochemistry for energy applications
    Tang, Jinyao
    Xie, Rongxuan
    Pishva, Parsa
    Shen, Xiaochen
    Zhu, Yanlin
    Peng, Zhenmeng
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (26) : 15580 - 15591
  • [4] Integration of hydrogenation and dehydrogenation based on dibenzyltoluene as liquid organic hydrogen energy carrier
    Shi, Libin
    Qi, Suitao
    Qu, Jifeng
    Che, Tinghua
    Yi, Chunhai
    Yang, Bolun
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (11) : 5345 - 5354
  • [5] Resilience of Liquid Organic Hydrogen Carrier Based Energy-Storage Systems
    Ruede, Timo
    Boesmann, Andreas
    Preuster, Patrick
    Wasserscheid, Peter
    Arlt, Wolfgang
    Mueller, Karsten
    ENERGY TECHNOLOGY, 2018, 6 (03) : 529 - 539
  • [6] Thermodynamic analysis of hydrogen storage: Biphenyl as affordable liquid organic hydrogen carrier (LOHC)
    Konnova, Maria E.
    Vostrikov, Sergey V.
    Pimerzin, Aleksey A.
    Verevkin, Sergey P.
    JOURNAL OF CHEMICAL THERMODYNAMICS, 2021, 159
  • [7] Targeting and scheduling of standalone renewable energy system with liquid organic hydrogen carrier as energy storage
    Mah, Angel Xin Yee
    Ho, Wai Shin
    Hassim, Mimi H.
    Hashim, Haslenda
    Liew, Peng Yen
    Ab Muis, Zarina
    ENERGY, 2021, 218
  • [8] Analysis of Liquid Organic Hydrogen Carrier Systems Properties of liquid organic hydrogen carriers, operation conditions and catalytic materials employed
    Southall, Emma
    Lukashuk, Liliana
    JOHNSON MATTHEY TECHNOLOGY REVIEW, 2022, 66 (03): : 271 - 284
  • [9] Natural liquid organic hydrogen carrier with low dehydrogenation energy: A first principles study
    Tang, Chunguang
    Fei, Shunxin
    Lin, G. David
    Liu, Yun
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (56) : 32089 - 32097
  • [10] Reliability of liquid organic hydrogen carrier-based energy storage in a mobility application
    Uhrig, Felix
    Kadar, Julian
    Mueller, Karsten
    ENERGY SCIENCE & ENGINEERING, 2020, 8 (06) : 2044 - 2053