Testing of anisole and methyl acetate as additives to diesel and biodiesel fuels in a compression ignition engine

被引:18
|
作者
Londhe, Himanshu [1 ]
Luo, Guanqun [2 ]
Park, Sunkyu [2 ]
Kelley, Stephen S. [2 ]
Fang, Tiegang [1 ]
机构
[1] North Carolina State Univ, Dept Mech & Aerosp Engn, Raleigh, NC 27695 USA
[2] North Carolina State Univ, Dept Forest Biomat, Raleigh, NC 27695 USA
基金
美国食品与农业研究所;
关键词
Pyrolysis oil; Methylation; Anisole; Methyl acetate; Fuel additives; Diesel engine; COMBUSTION; PERFORMANCE; OIL; PYROLYSIS; BIOMASS; EMISSIONS; STABILITY; BLENDS; ETHANOL;
D O I
10.1016/j.fuel.2019.02.079
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This paper investigates the effects of anisole and methyl acetate (as fuel additives) on the performance and emission characteristics of a compression-ignition (i.e., diesel) engine. Anisole and methyl acetate can be obtained from methylation of phenol and acetic acid, respectively. Phenol and acetic acid are compounds which are abundant in bio-oil derived from pyrolysis of wood and is thus renewable in nature. Using methyl acetate as a diesel fuel additive in compression-ignition engines has rarely been reported in the literature. The objective of the current work is to provide testing results of methyl acetate and perform comparisons with anisole as fuel additives for both diesel and biodiesel fuels. The effects of loads, additive type, and base fuels were tested. The tested loads include 0, 1.26, 2.52, and 3.78 bar brake mean effective pressure (BMEP) and the base fuels include No.2 diesel and biodiesel from waste cooking oil. The additive concentrations were kept at 10% by volume. Engine performance, exhaust emissions, and in-cylinder combustion were measured and analyzed. For dieselanisole (DA) blends, it was seen that the blends were comparable to diesel in terms of performance but with slightly higher fuel consumption rates. HC and CO emissions reduced slightly, however, NOx and soot concentration increased. Diesel-methyl acetate (DM) blends were comparable to diesel in terms of performance with a slight increase in the fuel consumption rates. HC and CO emissions decreased with added methyl acetates. NOx and soot concentration increased. Both anisole and methyl acetate of 10% by volume in biodiesel were tested and it was observed that both blends were slightly better than pure biodiesel in terms of performance. HC and CO emissions reduced for both blends. NOx and soot concentration however increased as compared to pure biodiesel. From the experiments, it is believed that both anisole and methyl acetate can be used as suitable additives to diesel and biodiesel in terms of performance; however, the emissions of NOx and soot can pose a challenge.
引用
收藏
页码:79 / 92
页数:14
相关论文
共 50 条