CHAMP DE YANG-MILLS AVEC GROUPE DE JAUGE SU(2) (YANG-MILLS FIELD WITH SU(2) AS GAUGE GROUP)

被引:0
|
作者
Lesfari, A. [1 ]
机构
[1] Univ Chouaib Doukkali, Fac Sci, Dept Math, El Jadida, Morocco
来源
MATHEMATICAL REPORTS | 2015年 / 17卷 / 01期
关键词
hamiltonian; integrable systems; lax representation; curves; abelian surfaces; Jacobian varieties; prym varieties; R-MATRIX ALGEBRA; SYSTEMS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we consider a hamiltonian system which, in a special case and under the gauge group SU(2), can be considered as some reduction of the Yang-Mills field equations. We study this system from a different angle. We show that this system is completely integrable and we realize explicitly, using the Lax spectral curve technique that the flows generated by the constants of the motion are straight lines on the Jacobi variety of a genus 2 hyperelliptic curve. We show that at some special values of the parameters, we can describe elliptic solutions which are associated with two-gap elliptic solitons of the Korteweg-de Vries equation. We show that the complex affine variety defined by putting the invariants of the system equal to generic constants completes into an abelian surface and the system is algebraic completely integrable. We give a direct proof that the abelian surface obtained in this paper is dual to Prym variety of an hyperelliptic curve of genus 3.
引用
收藏
页码:133 / 153
页数:21
相关论文
共 50 条
  • [1] GAUGE FIELD THERMODYNAMICS FOR THE SU(2) YANG-MILLS SYSTEM
    ENGELS, J
    KARSCH, F
    SATZ, H
    MONTVAY, I
    [J]. NUCLEAR PHYSICS B, 1982, 205 (04) : 545 - 577
  • [2] VACUA FOR SU(2) YANG-MILLS
    ANISHETTY, R
    [J]. PHYSICS LETTERS B, 1982, 108 (4-5) : 295 - 298
  • [3] Generalized gauge transformations: SU(2) Yang-Mills case
    Gastmans, R
    Newton, C
    Wu, TT
    [J]. PHYSICAL REVIEW D, 1996, 54 (08): : 5302 - 5314
  • [4] Dual superconductors and SU(2) Yang-Mills
    Niemi, AJ
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2004, (08):
  • [5] FLUCTUATIONS IN SU(2) YANG-MILLS THEORY
    JOSEPH, KB
    BABY, BV
    [J]. PRAMANA, 1984, 22 (02) : 111 - 115
  • [6] QUATERNIONIC METRICS AND SU(2) YANG-MILLS
    DOLAN, BP
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1982, 15 (07): : 2191 - 2200
  • [7] MULTIFURCATIONS IN SU(2) YANG-MILLS THEORY
    FROYLAND, J
    [J]. PHYSICAL REVIEW D, 1983, 27 (04) : 943 - 946
  • [8] Topology in SU(2) Yang-Mills theory
    Alles, B
    D'Elia, M
    Di Giacomo, A
    Kirchner, R
    [J]. NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 1998, 63 : 510 - 512
  • [9] SU(4) YANG-MILLS FIELD SOLUTION
    SANTAMARINA, J
    [J]. ACTA PHYSICA POLONICA B, 1979, 10 (06): : 533 - 535
  • [10] SUR LE CHAMP DE YANG-MILLS
    TORO, TI
    [J]. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE B, 1966, 262 (22): : 1413 - &