Monitoring leaf potassium content using hyperspectral vegetation indices in rice leaves

被引:48
|
作者
Lu, Jingshan [1 ]
Yang, Tiancheng [1 ]
Su, Xi [1 ]
Qi, Hao [1 ]
Yao, Xia [1 ]
Cheng, Tao [1 ]
Zhu, Yan [1 ]
Cao, Weixing [1 ]
Tian, Yongchao [1 ]
机构
[1] Nanjing Agr Univ, Natl Engn & Technol Ctr Informat Agr, Key Lab Crop Syst Anal & Decis Making, Minstry Agr & Rural Affairs,Jiangsu Key Lab Infor, 1 Weigang Rd, Nanjing 210095, Jiangsu, Peoples R China
关键词
Rice; Leaf; Leaf potassium content; Hyper-spectra; Vegetation indices; RED EDGE POSITION; SPECTRAL REFLECTANCE; REMOTE DETECTION; WATER-CONTENT; NITROGEN; CHLOROPHYLL; GROWTH; DEFICIENCIES; PHOSPHORUS; MODEL;
D O I
10.1007/s11119-019-09670-w
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
Potassium (K) is one of three main crop nutrients, and the high rate of potash fertilizer utilization (second only to nitrogen) leads to high prices. Therefore, efficient application, as well as rapid and time monitoring of K in crops is essential. Several turnover box and field experiments were conducted across multiple years and cultivation factors (i.e., potassium levels and plant varieties) yielding 340 groups of leaf samples with different K contents; these samples were used to examine the relationship between reflectance spectra (350-2500 nm) and leaf K content (LKC). The correlation between LKC and the two-band spectral indices computed with random two bands from 350 to 2500 nm were determined for the published K vegetation indices in rice. Results showed that the spectral reflectance, R, of the shortwave infrared (1300-2000 nm) region was sensitive to the K levels and significantly correlated with rice LKC. New shortwave infrared two-band spectral indices, Normalized difference spectral index [NDSI (R-1705, R-1385)], Ratio spectral index [RSI (R-1385, R-1705)], and Difference spectral index [DSI (R-1705, R-1385)], showed good correlations with LKC (R-2 up to 0.68). Moreover, the three-band spectral indices (R-1705 - R-700)/(R-1385 - R-700) and (R-1705 - R-1385)/(R-1705 + R-1385 - 2 x R-704) were developed by adding red edge bands to improve accuracy. Three-band spectral indices had an improved prediction accuracy for rice LKC (R-2 up to 0.74). However, several previously published K-sensitive vegetation indices did not yield good results in this study. Validation with independent samples showed that the indices (R-1705 - R-700)/(R-1385 - R-700) and (R-1705 - R-1385)/(R-1705 + R-1385 - 2 x R-704) had higher accuracies and stabilities than two-band indices and are suitable for quantitatively estimating rice LKC. The widescale application of these proposed vegetation indices in this paper still needs to be verified in different environmental conditions. This study provides a technical basis for LKC monitoring using spectral remote sensing in rice.
引用
收藏
页码:324 / 348
页数:25
相关论文
共 50 条
  • [1] Monitoring leaf potassium content using hyperspectral vegetation indices in rice leaves
    Jingshan Lu
    Tiancheng Yang
    Xi Su
    Hao Qi
    Xia Yao
    Tao Cheng
    Yan Zhu
    Weixing Cao
    Yongchao Tian
    [J]. Precision Agriculture, 2020, 21 : 324 - 348
  • [2] Estimation of leaf chlorophyll content in wheat using hyperspectral vegetation indices
    Pradhan, Sanatan
    Bandyopadhyay, Kali Kinkar
    Sehgal, Vinay Kumar
    Sahoo, Rabi Narayan
    Panigrahi, Pravukalyan
    Krishna, Gopal
    Gupta, Vinod Kumar
    Joshi, Devendra Kumar
    [J]. CURRENT SCIENCE, 2020, 119 (02): : 174 - 175
  • [3] Assessing Rice Chlorophyll Content with Vegetation Indices from Hyperspectral Data
    Xu, Xingang
    Gu, Xiaohe
    Song, Xiaoyu
    Li, Cunjun
    Huang, Wenjiang
    [J]. COMPUTER AND COMPUTING TECHNOLOGIES IN AGRICULTURE IV, PT 1, 2011, 344 : 296 - 303
  • [4] Effects of adaxial and abaxial surface on the estimation of leaf chlorophyll content using hyperspectral vegetation indices
    Lu, Xingtong
    Lu, Shan
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2015, 36 (05) : 1447 - 1469
  • [5] Best hyperspectral indices for assessing leaf chlorophyll content in a degraded temperate vegetation
    Peng, Yu
    Fan, Min
    Wang, Qinghui
    Lan, Wenjuan
    Long, Yating
    [J]. ECOLOGY AND EVOLUTION, 2018, 8 (14): : 7068 - 7078
  • [6] Comparison of hyperspectral retrievals with vegetation water indices for leaf and canopy water content
    Hunt, E. Raymond
    Daughtry, Craig S. T.
    Qu, John J.
    Wang, Lingli
    Hao, Xianjun
    [J]. REMOTE SENSING AND MODELING OF ECOSYSTEMS FOR SUSTAINABILITY VIII, 2011, 8156
  • [7] Rice Chlorophyll Content Monitoring using Vegetation Indices from Multispectral Aerial Imagery
    Ang Yuhao
    Che'Ya, Nik Norasma
    Roslin, Nor Athirah
    Ismail, Mohd Razi
    [J]. PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY, 2020, 28 (03): : 779 - 795
  • [8] Comparison of different hyperspectral vegetation indices for canopy leaf nitrogen concentration estimation in rice
    Yong-Chao Tian
    Kai-Jian Gu
    Xu Chu
    Xia Yao
    Wei-Xing Cao
    Yan Zhu
    [J]. Plant and Soil, 2014, 376 : 193 - 209
  • [9] Comparison of different hyperspectral vegetation indices for canopy leaf nitrogen concentration estimation in rice
    Tian, Yong-Chao
    Gu, Kai-Jian
    Chu, Xu
    Yao, Xia
    Cao, Wei-Xing
    Zhu, Yan
    [J]. PLANT AND SOIL, 2014, 376 (1-2) : 193 - 209
  • [10] Comparison of Different Hyperspectral Vegetation Indices for Estimating Canopy Leaf Nitrogen Accumulation in Rice
    Chu, Xu
    Guo, YongJiu
    He, JiaoYang
    Yao, Xia
    Zhu, Yan
    Cao, WeiXing
    Cheng, Tao
    Tian, YongChao
    [J]. AGRONOMY JOURNAL, 2014, 106 (05) : 1911 - 1920