Periodic waves in fiber Bragg gratings

被引:15
|
作者
Chow, K. W. [1 ]
Merhasin, Ilya M. [2 ]
Malomed, Boris A. [3 ]
Nakkeeran, K. [4 ]
Senthilnathan, K. [5 ,6 ]
Wai, P. K. A. [5 ,6 ]
机构
[1] Univ Hong Kong, Dept Mech Engn, Hong Kong, Hong Kong, Peoples R China
[2] Univ Ctr Judea & Samaria, Dept Elect & Elect Engn, Ariel, Israel
[3] Tel Aviv Univ, Fac Engn, Dept Phys Elect, IL-69978 Tel Aviv, Israel
[4] Univ Aberdeen, Sch Engn, Kings Coll, Aberdeen AB24 3UE, Scotland
[5] Hong Kong Polytech Univ, Photon Res Ctr, Kowloon, Hong Kong, Peoples R China
[6] Hong Kong Polytech Univ, Dept Elect & Informat Sci, Kowloon, Hong Kong, Peoples R China
来源
PHYSICAL REVIEW E | 2008年 / 77卷 / 02期
关键词
D O I
10.1103/PhysRevE.77.026602
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We construct two families of exact periodic solutions to the standard model of fiber Bragg grating (FBG) with Kerr nonlinearity. The solutions are named "sn" and "cn" waves, according to the elliptic functions used in their analytical representation. The sn wave exists only inside the FBG's spectral bandgap, while waves of the cn type may only exist at negative frequencies (omega < 0), both inside and outside the bandgap. In the long-wave limit, the sn and cn families recover, respectively, the ordinary gap solitons, and (unstable) antidark and dark solitons. Stability of the periodic solutions is checked by direct numerical simulations and, in the case of the sn family, also through the calculation of instability growth rates for small perturbations. Although, rigorously speaking, all periodic solutions are unstable, a subfamily of practically stable sn waves, with a sufficiently large spatial period and omega>0, is identified. However, the sn waves with omega < 0, as well as all cn solutions, are strongly unstable.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Periodic and solitary waves in optical fiber Bragg gratings with dispersive reflectivity
    Kudryashov, Nikolay A.
    CHINESE JOURNAL OF PHYSICS, 2020, 66 : 401 - 405
  • [2] Fiber Bragg gratings as ultrasonic waves sensors
    Minardo, A
    Cusano, A
    Bernini, R
    Zeni, L
    Giordano, M
    SECOND EUROPEAN WORKSHOP ON OPTICAL FIBRE SENSORS: PROCEEDINGS, 2004, 5502 : 84 - 87
  • [3] Response of fiber Bragg gratings to longitudinal ultrasonic waves
    Minardo, A
    Cusano, A
    Bernini, R
    Zeni, L
    Giordano, M
    IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2005, 52 (02) : 304 - 312
  • [4] Bloch waves and Wannier functions in periodic superstructure Bragg gratings
    Talanina, I
    de Sterke, CM
    PHYSICAL REVIEW A, 2000, 62 (04): : 043802 - 043801
  • [5] Bloch waves and Wannier functions in periodic superstructure Bragg gratings
    Talanina, I.
    De Sterke, C. Martijn
    Physical Review A - Atomic, Molecular, and Optical Physics, 2000, 62 (04): : 043802 - 043801
  • [6] Fibonacci quasi-periodic superstructure fiber Bragg gratings
    Zhang, Jian
    Cao, Yinghui
    Zheng, Jie
    OPTIK, 2010, 121 (05): : 417 - 421
  • [7] Acoustic waves in tilted fiber Bragg gratings for sensing applications
    Marques, Carlos A. F.
    Alberto, Nelia J.
    Domingues, Fatima
    Leitao, Catia
    Antunes, Paulo
    Pinto, Joao L.
    Andre, Paulo
    OPTICAL SENSORS 2017, 2017, 10231
  • [8] Fiber Bragg gratings
    Othonos, A
    REVIEW OF SCIENTIFIC INSTRUMENTS, 1997, 68 (12): : 4309 - 4341
  • [9] Fiber Bragg gratings
    Lightwave, 2000, 17 (04):
  • [10] Passive guided waves measurements using fiber Bragg gratings sensors
    Druet, Tom
    Chapuis, Bastien
    Jules, Manfred
    Laffont, Guillaume
    Moulin, Emmanuel
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2018, 144 (03): : 1198 - 1202