Study on optimal inertial-confinement-fusion hohlraum wall radial density and wall loss

被引:10
|
作者
Zhang, Lu [1 ,2 ]
Ding, Yongkun [2 ]
Yang, Jiamin [2 ]
Wu, Shunchao [1 ,2 ]
Jiang, Shaoen [2 ]
机构
[1] Tsinghua Univ, Dept Engn Phys, Beijing 100084, Peoples R China
[2] China Acad Engn Phys, Res Ctr Laser Fus, Mianyang 621900, Peoples R China
关键词
TARGET PHYSICS; IGNITION;
D O I
10.1063/1.3562873
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Reducing hohlraum wall loss is one of the most important ways to improve hohlraum coupling efficiency in laser indirect drive inertial-confinement fusion. It is appeared that a high Z metallic foam as hohlraum wall material will reduce wall loss. By adjusting initial hohlraum wall density distribution along radial axes to rho(0)(r) = kr, the numerical simulation results show that it can indeed bring best savings of similar to 40% general wall loss. We conclude that absorbed energy mainly decreases by restraining rarefactions, and a proper slope k can optimize internal energy loss of low density and increased kinetic loss by subsonic. Also saved energy ratio reduces with source temperature decreasing. This approach would cut the reactor driver that needs quite substantially if experiments demonstrate it. (C) 2011 American Institute of Physics. [doi:10.1063/1.3562873]
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Analytic expressions for optimal inertial-confinement-fusion hohlraum wall density and wall loss
    Rosen, MD
    Hammer, JH
    PHYSICAL REVIEW E, 2005, 72 (05):
  • [2] Thomson scattering from inertial-confinement-fusion Hohlraum plasmas
    Glenzer, SH
    Back, CA
    Suter, LJ
    Blain, MA
    Landen, OL
    Lindl, JD
    MacGowan, BJ
    Stone, GF
    Turner, RE
    Wilde, BH
    PHYSICAL REVIEW LETTERS, 1997, 79 (07) : 1277 - 1280
  • [3] Proton imaging of hohlraum plasma stagnation in inertial-confinement-fusion experiments
    Li, C. K.
    Seguin, F. H.
    Frenje, J. A.
    Sinenian, N.
    Rosenberg, M. J.
    Manuel, M. J-E
    Rinderknecht, H. G.
    Zylstra, A. B.
    Petrasso, R. D.
    Amendt, P. A.
    Landen, O. L.
    Mackinnon, A. J.
    Town, R. P. J.
    Wilks, S. C.
    Betti, R.
    Meyerhofer, D. D.
    Soures, J. M.
    Hund, J.
    Kilkenny, J. D.
    Nikroo, A.
    NUCLEAR FUSION, 2013, 53 (07)
  • [4] HOHLRAUM MANUFACTURE FOR INERTIAL CONFINEMENT FUSION
    FOREMAN, LR
    GOBBY, P
    BARTOS, J
    BROOKS, PM
    BUSH, H
    GOMEZ, V
    ELLIOTT, N
    MOORE, J
    RIVERA, G
    SALAZAR, M
    SALZER, L
    FUSION TECHNOLOGY, 1994, 26 (03): : 696 - 701
  • [5] Optical field distribution on a hohlraum wall during indirect laser-driven inertial confinement fusion
    Ren, Lei
    You, Kewei
    Jiao, Zhaoyang
    Zhu, Jianqiang
    OPTIK, 2016, 127 (07): : 3629 - 3632
  • [6] Mixing with applications to inertial-confinement-fusion implosions
    Rana, V.
    Lim, H.
    Melvin, J.
    Glimm, J.
    Cheng, B.
    Sharp, D. H.
    PHYSICAL REVIEW E, 2017, 95 (01)
  • [7] DEVELOPMENT OF THE CASCADE INERTIAL-CONFINEMENT-FUSION REACTOR
    PITTS, JH
    FUSION TECHNOLOGY, 1985, 8 (01): : 1198 - 1203
  • [8] Investigation of various methods for wall loss reduction in Inertial Confinement Fusion hohlraums
    Mishra, Gaurav
    Ghosh, Karabi
    HIGH ENERGY DENSITY PHYSICS, 2019, 33
  • [9] VACUUM PUMPING FOR INERTIAL-CONFINEMENT-FUSION REACTORS
    PITTS, JH
    PATTON, HG
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS, 1990, 8 (03): : 3052 - 3057
  • [10] Energetics of inertial confinement fusion Hohlraum plasmas
    Glenzer, SH
    Suter, LJ
    Turner, RE
    MacGowan, BJ
    Estabrook, KG
    Blain, MA
    Dixit, SN
    Hammel, BA
    Kauffman, RL
    Kirkwood, RK
    Landen, OL
    Monteil, MC
    Moody, JD
    Orzechowski, TJ
    Pennington, DM
    Stone, GF
    Weiland, TL
    PHYSICAL REVIEW LETTERS, 1998, 80 (13) : 2845 - 2848