An Approach in Big Data Analytics to Improve the Velocity of Unstructured Data Using MapReduce

被引:3
|
作者
Sundarakumar, M. R. [1 ]
Mahadevan, G. [2 ]
Somula, Ramasubbareddy [3 ]
Sennan, Sankar [4 ]
Rawal, Bharat S. [5 ]
机构
[1] AMC Engn Coll, Dept Comp Sci & Engn, Bengaluru, India
[2] AMC Engn Coll, Bengaluru, India
[3] VNRVJIET, Secunderabad, India
[4] Sona Coll Technol, Salem, India
[5] Gannon Univ, Dept Cyber Secur, Erie, PA USA
关键词
Big Data; CESI; MapReduce; MRBNGS;
D O I
10.4018/IJSDA.20211001.oa6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Big data analytics is an innovative approach to extract the data from a huge volume of data warehouse systems. Hadoop is a framework, which is used to perform high speed data retrieval from various clusters by MapReduce and HDFS methods. The huge volumes of files are accessed using data mining, machine learning, and deep learning algorithms. However, these techniques take more time to retrieve the data among the clusters. To overcome the latency issue, the proposed work applies the hybrid algorithm, namely compressed elastic search index (CESI) and MapReduce-based next generation sequencing approach (MRBNGSA), in scheduling and shuffling phase. This proposed approach provides the tangible changes over the MapReduce phases. The performance of the proposed CESI-MRBNGSA algorithm provides significant performance than Hadoop BAM and GATK.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] Structured and Unstructured Big Data Analytics
    Misluu, Suyash
    Misra, Anuranjan
    [J]. 2017 INTERNATIONAL CONFERENCE ON CURRENT TRENDS IN COMPUTER, ELECTRICAL, ELECTRONICS AND COMMUNICATION (CTCEEC), 2017, : 740 - 746
  • [2] Big Data Analytics based on PANFIS MapReduce
    Za'in, Choiru
    Pratama, Mahardhika
    Lughofer, Edwin
    Ferdaus, Meftahul
    Cai, Qing
    Prasad, Mukesh
    [J]. INNS CONFERENCE ON BIG DATA AND DEEP LEARNING, 2018, 144 : 140 - 152
  • [3] On using MapReduce to scale algorithms for Big Data analytics: a case study
    Kijsanayothin, Phongphun
    Chalumporn, Gantaphon
    Hewett, Rattikorn
    [J]. JOURNAL OF BIG DATA, 2019, 6 (01)
  • [4] Enabling Big Data Analytics in the Hybrid Cloud using Iterative MapReduce
    Clemente-Castello, Francisco J.
    Nicolae, Bogdan
    Katrinis, Kostas
    Rafique, M. Mustafa
    Mayo, Rafael
    Carlos Fernandez, Juan
    Loreti, Daniela
    [J]. 2015 IEEE/ACM 8TH INTERNATIONAL CONFERENCE ON UTILITY AND CLOUD COMPUTING (UCC), 2015, : 290 - 299
  • [5] On using MapReduce to scale algorithms for Big Data analytics: a case study
    Phongphun Kijsanayothin
    Gantaphon Chalumporn
    Rattikorn Hewett
    [J]. Journal of Big Data, 6
  • [6] Framework to Extract Context Vectors from Unstructured Data using Big Data Analytics
    Ahmad, Tanvir
    Ahmad, Rafeeq
    Masud, Sarah
    Nilofer, Farheen
    [J]. 2016 NINTH INTERNATIONAL CONFERENCE ON CONTEMPORARY COMPUTING (IC3), 2016, : 221 - 226
  • [7] Mining on Relationships in Big Data era using Improve Apriori Algorithm with MapReduce Approach
    Pandey, Kamlesh Kumar
    Shukla, Diwakar
    [J]. 2018 INTERNATIONAL CONFERENCE ON ADVANCED COMPUTATION AND TELECOMMUNICATION (ICACAT), 2018,
  • [8] Standardizing Unstructured Big Data and Visual Interpretation using MapReduce and Correspondence Analysis
    Choi, Joseph
    Choi, Yong-Seok
    [J]. KOREAN JOURNAL OF APPLIED STATISTICS, 2014, 27 (02) : 169 - 183
  • [9] Investigation and Characterization of MapReduce Applications for Big Data Analytics
    Li, Y.
    Lam, T. B. V.
    Do, T. V. Van
    Chakka, R.
    Rotter, C.
    [J]. JOURNAL OF SCIENTIFIC & INDUSTRIAL RESEARCH, 2018, 77 (09): : 493 - 498
  • [10] An intelligent approach to Big Data analytics for sustainable retail environment using Apriori-MapReduce framework
    Verma, Neha
    Singh, Jatinder
    [J]. INDUSTRIAL MANAGEMENT & DATA SYSTEMS, 2017, 117 (07) : 1503 - 1520