Accuracy of genomic breeding values for meat tenderness in Polled Nellore cattle

被引:18
|
作者
Magnabosco, C. U. [1 ]
Lopes, F. B. [1 ,2 ]
Fragoso, R. R. [1 ]
Eifert, E. C. [1 ]
Valente, B. D. [2 ]
Rosa, G. J. M. [2 ]
Sainz, R. D. [3 ]
机构
[1] Embrapa Cerrados, BR 020 Km 18,POB 08223, BR-73310970 Planaltina, DF, Brazil
[2] Univ Wisconsin, Dept Anim Sci, Madison, WI 53706 USA
[3] Univ Calif Davis, Dept Anim Sci, Davis, CA 95616 USA
关键词
Bayesian regression models; genomic prediction; Nellore; meat tenderness; QUANTITATIVE TRAIT LOCI; BRATZLER SHEAR FORCE; QUALITY TRAITS; BOS-INDICUS; WIDE ASSOCIATION; CARCASS TRAITS; GENETIC-PARAMETERS; PREDICTION; GROWTH; TAURUS;
D O I
10.2527/jas.2016-0279
中图分类号
S8 [畜牧、 动物医学、狩猎、蚕、蜂];
学科分类号
0905 ;
摘要
Zebu (Bos indicus) cattle, mostly of the Nellore breed, comprise more than 80% of the beef cattle in Brazil, given their tolerance of the tropical climate and high resistance to ectoparasites. Despite their advantages for production in tropical environments, zebu cattle tend to produce tougher meat than Bos taurus breeds. Traditional genetic selection to improve meat tenderness is constrained by the difficulty and cost of phenotypic evaluation for meat quality. Therefore, genomic selection may be the best strategy to improve meat quality traits. This study was performed to compare the accuracies of different Bayesian regression models in predicting molecular breeding values for meat tenderness in Polled Nellore cattle. The data set was composed of Warner-Bratzler shear force (WBSF) of longissimus muscle from 205, 141, and 81 animals slaughtered in 2005, 2010, and 2012, respectively, which were selected and mated so as to create extreme segregation for WBSF. The animals were genotyped with either the Illumina BovineHD (HD; 777,000 from 90 samples) chip or the GeneSeek Genomic Profiler (GGP Indicus HD; 77,000 from 337 samples). The quality controls of SNP were Hard-Weinberg Proportion P-value >= 0.1%, minor allele frequency > 1%, and call rate > 90%. The FImpute program was used for imputation from the GGP Indicus HD chip to the HD chip. The effect of each SNP was estimated using ridge regression, least absolute shrinkage and selection operator (LASSO), Bayes A, Bayes B, and Bayes C pi methods. Different numbers of SNP were used, with 1, 2, 3, 4, 5, 7, 10, 20, 40, 60, 80, or 100% of the markers preselected based on their significance test (P-value from genomewide association studies [ GWAS]) or randomly sampled. The prediction accuracy was assessed by the correlation between genomic breeding value and the observed WBSF phenotype, using a leave-one-out cross-validation methodology. The prediction accuracies using all markers were all very similar for all models, ranging from 0.22 (Bayes Cp) to 0.25 (Bayes B). When preselecting SNP based on GWAS results, the highest correlation (0.27) between WBSF and the genomic breeding value was achieved using the Bayesian LASSO model with 15,030 (3%) markers. Although this study used relatively few animals, the design of the segregating population ensured wide genetic variability for meat tenderness, which was important to achieve acceptable accuracy of genomic prediction. Although all models showed similar levels of prediction accuracy, some small advantages were observed with the Bayes B approach when higher numbers of markers were preselected based on their P-values resulting from a GWAS analysis.
引用
收藏
页码:2752 / 2760
页数:9
相关论文
共 50 条
  • [1] Quantitative genetic analysis for meat tenderness trait in Polled Nellore cattle
    de Castro, Leticia Mendes
    Magnabosco, Claudio Ulhoa
    Sainz, Roberto Daniel
    de Faria, Carina Ubirajara
    Lopes, Fernando Brito
    [J]. REVISTA CIENCIA AGRONOMICA, 2014, 45 (02): : 393 - 402
  • [2] Genomewide association mapping and pathway analysis of meat tenderness in Polled Nellore cattle
    Castro, L. M.
    Rosa, G. J. M.
    Lopes, F. B.
    Regitano, L. C. A.
    Rosa, A. J. M.
    Magnabosco, C. U.
    [J]. JOURNAL OF ANIMAL SCIENCE, 2017, 95 (05) : 1945 - 1956
  • [3] Improving genomic prediction accuracy for meat tenderness in Nellore cattle using artificial neural networks
    Brito Lopes, Fernando
    Magnabosco, Claudio U.
    Passafaro, Tiago L.
    Brunes, Ludmilla C.
    Costa, Marcos F. O.
    Eifert, Eduardo C.
    Narciso, Marcelo G.
    Rosa, Guilherme J. M.
    Lobo, Raysildo B.
    Baldi, Fernando
    [J]. JOURNAL OF ANIMAL BREEDING AND GENETICS, 2020, 137 (05) : 438 - 448
  • [4] Genomic prediction of breeding values for carcass traits in Nellore cattle
    Fernandes Junior, Gerardo A.
    Rosa, Guilherme J. M.
    Valente, Bruno D.
    Carvalheiro, Roberto
    Baldi, Fernando
    Garcia, Diogo A.
    Gordo, Daniel G. M.
    Espigolan, Rafael
    Takada, Luciana
    Tonussi, Rafael L.
    de Andrade, Willian B. F.
    Magalhaes, Ana F. B.
    Chardulo, Luis A. L.
    Tonhati, Humberto
    de Albuquerque, Lucia G.
    [J]. GENETICS SELECTION EVOLUTION, 2016, 48
  • [5] Genomic prediction of breeding values for carcass traits in Nellore cattle
    Gerardo A. Fernandes Júnior
    Guilherme J. M. Rosa
    Bruno D. Valente
    Roberto Carvalheiro
    Fernando Baldi
    Diogo A. Garcia
    Daniel G. M. Gordo
    Rafael Espigolan
    Luciana Takada
    Rafael L. Tonussi
    Willian B. F. de Andrade
    Ana F. B. Magalhães
    Luis A. L. Chardulo
    Humberto Tonhati
    Lucia G. de Albuquerque
    [J]. Genetics Selection Evolution, 48
  • [6] Comparison of methods for predicting genomic breeding values for growth traits in Nellore cattle
    Ana Paula Nascimento Terakado
    Raphael Bermal Costa
    Natalia Irano
    Tiago Bresolin
    Henrique Nunes de Oliveira
    Roberto Carvalheiro
    Fernando Baldi
    Iara Del Pilar Solar Diaz
    Lucia Galvão de Albuquerque
    [J]. Tropical Animal Health and Production, 2021, 53
  • [7] Comparison of methods for predicting genomic breeding values for growth traits in Nellore cattle
    Nascimento Terakado, Ana Paula
    Costa, Raphael Bermal
    Irano, Natalia
    Bresolin, Tiago
    de Oliveira, Henrique Nunes
    Carvalheiro, Roberto
    Baldi, Fernando
    Solar Diaz, Iara Del Pilar
    de Albuquerque, Lucia Galvao
    [J]. TROPICAL ANIMAL HEALTH AND PRODUCTION, 2021, 53 (03)
  • [8] Genomic study for beef tenderness in a polled Nelore cattle population.
    Silva, R. M. O.
    Mendes de Castro, L.
    Peripolli, E.
    Lopes, F. B.
    Pereira, A. S. C.
    Baldi, F.
    Rosa, G. J. M.
    Regitano, L. C. A.
    Sainz, R. D.
    Ulhoa, C.
    [J]. JOURNAL OF ANIMAL SCIENCE, 2017, 95 : 101 - 101
  • [9] Estimating genetic parameters of reproductive, carcass, and meat quality traits in Polled Nellore cattle
    M. M. S. Mamede
    G. J. M. Rosa
    E. C. Eifert
    F. B. Lopes
    F. Baldi
    M. F. Costa
    R. D. Sainz
    A. S. Carmo
    A. S. Mascioli
    C. U. Magnabosco
    [J]. Tropical Animal Health and Production, 2023, 55
  • [10] Estimating genetic parameters of reproductive, carcass, and meat quality traits in Polled Nellore cattle
    Mamede, M. M. S.
    Rosa, G. J. M.
    Eifert, E. C.
    Lopes, F. B.
    Baldi, F.
    Costa, M. F.
    Sainz, R. D.
    Carmo, A. S.
    Mascioli, A. S.
    Magnabosco, C. U.
    [J]. TROPICAL ANIMAL HEALTH AND PRODUCTION, 2023, 55 (02)