Deflated preconditioned conjugate gradient solvers for the pressure-Poisson equation: Extensions and improvements

被引:38
|
作者
Loehner, Rainald [1 ]
Mut, Fernando [1 ]
Cebral, Juan Raul [1 ]
Aubry, Romain [2 ]
Houzeaux, Guillaume [2 ]
机构
[1] George Mason Univ, Coll Sci, CFD Ctr, Dept Computat & Data Sci, Fairfax, VA 22030 USA
[2] Barcelona Supercomp Ctr, Barcelona, Spain
关键词
iterative solvers; conjugate gradients; pressure-Poisson equation; incompressible solvers; finite elements; CFD; EXTREME CONTRASTS; CONSTRUCTION; CONVERGENCE; PREDICTION; SYSTEM; FLOWS;
D O I
10.1002/nme.2932
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Extensions and improvements to a deflated preconditioned conjugate gradient technique for the solution of the pressure-Poisson equation within an incompressible flow solver are described. In particular, the use of the technique for embedded grids, for cases where volume of fluid or level set schemes are required and its implementation on parallel machines are considered. Several examples are included that demonstrate a considerable reduction in the number of iterations and a remarkable insensitivity to the number of groups/regions chosen and/or to the way the groups are formed. Copyright (C) 2010 John Wiley & Sons, Ltd.
引用
收藏
页码:2 / 14
页数:13
相关论文
共 41 条
  • [1] Deflated preconditioned conjugate gradient solvers for the Pressure-Poisson equation
    Aubry, Romain
    Mut, Fernando
    Lohner, Rainald
    Cebral, Juan R.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 227 (24) : 10196 - 10208
  • [2] Deflated preconditioned conjugate gradient solvers for linear elasticity
    Aubry, R.
    Mut, F.
    Dey, S.
    Loehner, R.
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2011, 88 (11) : 1112 - 1127
  • [3] BPX-Like Preconditioned Conjugate Gradient Solvers for Poisson Problem and Their CUDA Implementations
    Peng, Jie
    Shu, Shi
    Feng, Chunsheng
    Yue, Xiaoqiang
    [J]. INFORMATION TECHNOLOGY AND INTELLIGENT TRANSPORTATION SYSTEMS, VOL 1, 2017, 454 : 633 - 643
  • [4] Solution of the pressure correction equation by the preconditioned conjugate gradient method
    Sheen, SC
    Wu, JL
    [J]. NUMERICAL HEAT TRANSFER PART B-FUNDAMENTALS, 1997, 32 (02) : 215 - 230
  • [5] ON THE USE OF RIGID BODY MODES IN THE DEFLATED PRECONDITIONED CONJUGATE GRADIENT METHOD
    Jonsthovel, T. B.
    van Gijzen, M. B.
    Vuik, C.
    Scarpas, A.
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2013, 35 (01): : B207 - B225
  • [6] Preconditioned Conjugate Gradient Solvers for the Generalized Finite Element Method
    Fillmore, Travis B.
    Gupta, Varun
    Duarte, Carlos Armando
    [J]. MESHFREE METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS IX, 2019, 129 : 1 - 17
  • [7] Comparison of the deflated preconditioned conjugate gradient method and algebraic multigrid for composite materials
    T. B. Jönsthövel
    M. B. van Gijzen
    S. MacLachlan
    C. Vuik
    A. Scarpas
    [J]. Computational Mechanics, 2012, 50 : 321 - 333
  • [8] Comparison of the deflated preconditioned conjugate gradient method and algebraic multigrid for composite materials
    Jonsthovel, T. B.
    van Gijzen, M. B.
    MacLachlan, S.
    Vuik, C.
    Scarpas, A.
    [J]. COMPUTATIONAL MECHANICS, 2012, 50 (03) : 321 - 333
  • [9] Deflated preconditioned Conjugate Gradient methods for noise filtering of low-field MR images
    Shan, Xiujie
    van Gijzen, Martin B.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 400
  • [10] A FAST, PRECONDITIONED CONJUGATE-GRADIENT TOEPLITZ AND TOEPLITZ-LIKE SOLVERS
    PAN, V
    ZHENG, AL
    DIAS, O
    HUANG, XH
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1995, 30 (08) : 57 - 63