Anomalous synchronization of spatially extended chaotic systems in the presence of asymmetric coupling

被引:0
|
作者
Boccaletti, S
Mendoza, C
Bragard, J
机构
[1] Ist Nazl Ott Appl, I-50125 Florence, Italy
[2] Univ Navarra, Dept Phys & Appl Math, E-31080 Pamplona, Spain
来源
FLUCTUATION AND NOISE LETTERS | 2005年 / 5卷 / 02期
关键词
synchronization; extended systems;
D O I
10.1142/S0219477505002628
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper describes the effects of an asymmetric coupling in the synchronization of two spatially extended systems. Namely, we report the consequences induced by the presence of asymmetries in the coupling configuration of a pair of one-dimensional fields obeying Complex Ginzburg-Landau equations. While synchronization always occurs for large enough coupling strengths, asymmetries have the effect of enhancing synchronization and play a crucial role in setting the threshold for the appearance of the synchronized dynamics, as well as in selecting the statistical and dynamical properties of the synchronized motion. We discuss the process of synchronization in the presence of asymmetries by using some analytic expansions valid for a regime of soft spatial temporal chaos (i.e. phase turbulence regime). The influence of phase singularities that break the validity of the analysis is also discussed.
引用
收藏
页码:L251 / L258
页数:8
相关论文
共 50 条
  • [1] Synchronization of spatially extended chaotic systems in the presence of asymmetric coupling
    Bragard, J
    Boccaletti, S
    Mendoza, C
    Hentschel, HGE
    Mancini, H
    [J]. PHYSICAL REVIEW E, 2004, 70 (03):
  • [2] Synchronization of spatially extended chaotic systems with asymmetric coupling
    Boccaletti, S
    Mendoza, C
    Bragard, J
    [J]. BRAZILIAN JOURNAL OF PHYSICS, 2005, 35 (2B) : 411 - 417
  • [3] Asymmetric coupling effects in the synchronization of spatially extended chaotic systems
    Bragard, J
    Boccaletti, S
    Mancini, H
    [J]. PHYSICAL REVIEW LETTERS, 2003, 91 (06)
  • [4] Chaotic waves and phase synchronization in spatially extended ecological systems
    Blasius, B
    Stone, L
    [J]. STOCHASTIC AND CHAOTIC DYNAMICS IN THE LAKES, 2000, 502 : 221 - 225
  • [5] Intermittency near the phase boundary of chaotic synchronization in spatially extended systems
    D. I. Danilov
    A. A. Koronovskii
    O. I. Moskalenko
    [J]. Bulletin of the Russian Academy of Sciences: Physics, 2013, 77 (12) : 1460 - 1462
  • [6] Chaotic synchronization in coupled spatially extended beam-plasma systems
    Filatov, Roman A.
    Hramov, Alexander E.
    Koronovskii, Alexey A.
    [J]. PHYSICS LETTERS A, 2006, 358 (04) : 301 - 308
  • [7] Synchronization and control of spatially extended systems using sensor coupling
    Junge, L
    Parlitz, U
    Tasev, Z
    Kocarev, L
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1999, 9 (12): : 2265 - 2270
  • [8] Amplification through chaotic synchronization in spatially extended beam-plasma systems
    Moskalenko, Olga I.
    Frolov, Nikita S.
    Koronovskii, Alexey A.
    Hramov, Alexander E.
    [J]. CHAOS, 2017, 27 (12)
  • [9] Chaotic transients in spatially extended systems
    Tel, Tamas
    Lai, Ying-Cheng
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2008, 460 (06): : 245 - 275
  • [10] Modeling chaotic and spatially extended systems
    Merkwirth, C
    Parlitz, U
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2001, 81 : S113 - S116