STOCHASTIC PERRON FOR STOCHASTIC TARGET GAMES

被引:4
|
作者
Bayraktar, Erhan [1 ]
Li, Jiaqi [1 ]
机构
[1] Univ Michigan, Dept Math, 530 Church St, Ann Arbor, MI 48109 USA
来源
ANNALS OF APPLIED PROBABILITY | 2016年 / 26卷 / 02期
基金
美国国家科学基金会;
关键词
The stochastic target problem; stochastic Perron method; viscosity solutions; geometric dynamic programming principle; VISCOSITY SOLUTIONS; VERIFICATION; EQUATIONS;
D O I
10.1214/15-AAP1112
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We extend the stochastic Perron method to analyze the framework of stochastic target games, in which one player tries to find a strategy such that the state process almost surely reaches a given target no matter which action is chosen by the other player. Within this framework, our method produces a viscosity sub-solution (super-solution) of a Hamilton-Jacobi-Bellman (HJB) equation. We then characterize the value function as a viscosity solution to the HJB equation using a comparison result and a byproduct to obtain the dynamic programming principle.
引用
收藏
页码:1082 / 1110
页数:29
相关论文
共 50 条