Diffusive nature of thermal transport in stanene

被引:34
|
作者
Nissimagoudar, Arun S. [1 ]
Manjanath, Aaditya [1 ,2 ]
Singh, Abhishek K. [1 ]
机构
[1] Indian Inst Sci, Mat Res Ctr, Bangalore 560012, Karnataka, India
[2] Indian Inst Sci, Ctr Nano Sci & Engn, Bangalore 560012, Karnataka, India
关键词
TOTAL-ENERGY CALCULATIONS; SIZE DEPENDENCE; CONDUCTIVITY; GRAPHENE; TEMPERATURE; LAYER; GERMANENE; SILICENE; METALS;
D O I
10.1039/c5cp07957h
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Using the phonon Boltzmann transport formalism and density functional theory based calculations, we show that stanene has a low thermal conductivity. For a sample size of 1 x 1 mu m(2) (L x W), the lattice thermal conductivities along the zigzag and armchair directions are 10.83 W m(-1) K-1 and 9.2 W m(-1) K-1 respectively, at room temperature, indicating anisotropy in thermal transport. The low values of thermal conductivity are due to large anharmonicity in the crystal resulting in high Gruneisen parameters, and low group velocities. The room temperature effective phonon mean free path is found to be around 17 nm indicating that the thermal transport in stanene is completely diffusive in nature. Furthermore, our study reveals the relative importance of the contributing phonon branches and that, at very low temperatures, the contribution to lattice thermal conductivity comes from the flexural acoustic (ZA) branch and at higher temperatures it is dominated by the longitudinal acoustic (LA) branch. We also show that the lattice thermal conductivity of stanene can further be reduced by tuning the sample size and creating rough surfaces at the edges. Such tunability of lattice thermal conductivity in stanene suggests its applications in thermoelectric devices.
引用
收藏
页码:14257 / 14263
页数:7
相关论文
共 50 条
  • [1] Quantum thermal transport in stanene
    Zhou, Hangbo
    Cai, Yongqing
    Zhang, Gang
    Zhang, Yong-Wei
    [J]. PHYSICAL REVIEW B, 2016, 94 (04)
  • [2] Thermal transport characterization of stanene/silicene heterobilayer and stanene bilayer nanostructures
    Noshin, Maliha
    Khan, Asir Intisar
    Subrina, Samia
    [J]. NANOTECHNOLOGY, 2018, 29 (18)
  • [3] Lateral and flexural phonon thermal transport in graphene and stanene bilayers
    Hong, Yang
    Zhu, Chongqin
    Ju, Minggang
    Zhang, Jingchao
    Zeng, Xiao Cheng
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2017, 19 (09) : 6554 - 6562
  • [4] Diffusive Transport by Thermal Velocity Fluctuations
    Donev, Aleksandar
    Bell, John B.
    de la Fuente, Anton
    Garcia, Alejandro L.
    [J]. PHYSICAL REVIEW LETTERS, 2011, 106 (20)
  • [5] Carbon nanotube thermal transport: Ballistic to diffusive
    Wang, JA
    Wang, JS
    [J]. APPLIED PHYSICS LETTERS, 2006, 88 (11)
  • [6] Subkelvin lateral thermal transport in diffusive graphene
    Draelos, A. W.
    Silverman, A.
    Eniwaye, B.
    Arnault, E. G.
    Ke, C. T.
    Wei, M. T.
    Vlassiouk, I
    Borzenets, I., V
    Amet, F.
    Finkelstein, G.
    [J]. PHYSICAL REVIEW B, 2019, 99 (12)
  • [7] Thermal Transport Phenomena Beyond the Diffusive Regime
    Chapuis, Pierre-Olivier
    Nghiem, T. T. Trang
    Da Cruz, Carolina Abs
    Nefzaoui, Elyes
    [J]. PROCEEDINGS OF THE 23RD INTERNATIONAL CONFERENCE ON MIXED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS (MIXDES 2016), 2016, : 32 - 37
  • [8] Diffusive topological transport in spatiotemporal thermal lattices
    Guoqiang Xu
    Yihao Yang
    Xue Zhou
    Hongsheng Chen
    Andrea Alù
    Cheng-Wei Qiu
    [J]. Nature Physics, 2022, 18 : 450 - 456
  • [9] Diffusive topological transport in spatiotemporal thermal lattices
    Xu, Guoqiang
    Yang, Yihao
    Zhou, Xue
    Chen, Hongsheng
    Alu, Andrea
    Cheng-Wei Qiu
    [J]. NATURE PHYSICS, 2022, 18 (04) : 450 - +
  • [10] Circularly-polarized light controlled thermal spin transport in stanene nanoribbon
    Xiang Yang
    Zheng Jun
    Li Chun-Lei
    Wang Xiao-Ming
    Yuan Rui-Yang
    [J]. ACTA PHYSICA SINICA, 2021, 70 (14)