Model of crack propagation in heterogeneous materials

被引:1
|
作者
Daguier, P [1 ]
Bouchaud, E [1 ]
Lapasset, G [1 ]
机构
[1] Off Natl Etud & Rech Aerosp, OM, F-92322 Chatillon, France
来源
JOURNAL DE PHYSIQUE IV | 1998年 / 8卷 / P4期
关键词
D O I
10.1051/jp4:1998414
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A continuous numerical model of crack propagation in a bidimensional heterogeneous material is presented. This model describes the propagation of a macrocrack into a two-phase brittle material with a finite density of inclusions. The morphology of the cracks produced for various mechanical and microstructural conditions is analysed. The simulated cracks are self-affine and there exist two fracture regimes, each of them being characterized by a roughness index independent of the microstructure. Relevant length scales, on the contrary, depend on the microstructural parameters. It is shown that there exists a microstructure leading to an optimal fracture toughness.
引用
收藏
页码:123 / 128
页数:6
相关论文
共 50 条
  • [1] Stochastic model of crack propagation in brittle heterogeneous materials
    Khasin, Vladimir L.
    [J]. INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2014, 82 : 101 - 123
  • [2] Model of crack propagation in heterogeneous materials local approach
    Daguier, P
    Bouchaud, E
    Lapasset, G
    [J]. JOURNAL DE PHYSIQUE IV, 1996, 6 (C6): : 483 - 490
  • [3] Slow crack propagation in heterogeneous materials
    Kierfeld, J
    Vinokur, VM
    [J]. PHYSICAL REVIEW LETTERS, 2006, 96 (17)
  • [4] A probabilistic nonlocal model for crack initiation and propagation in heterogeneous brittle materials
    Guy, Nicolas
    Seyedi, Darius M.
    Hild, Francois
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2012, 90 (08) : 1053 - 1072
  • [5] Crack propagation, arrest and statistics in heterogeneous materials
    Kierfeld, Jan
    Vinokur, Valerii
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2008,
  • [6] A computational framework for crack propagation in spatially heterogeneous materials
    Lewandowski, Karol
    Kaczmarczyk, Lukasz
    Athanasiadis, Ignatios
    Marshall, John F.
    Pearce, Chris J.
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2021, 379 (2203):
  • [7] Fatigue crack propagation in ponder heterogeneous metallic materials
    Chekalkin, AA
    Sokolkin, YV
    Yakushina, EM
    [J]. LOW CYCLE FATIGUE AND ELASTO-PLASTIC BEHAVIOUR OF MATERIALS, 1998, : 615 - 620
  • [8] A model for short crack propagation in polycrystalline materials
    Lillbacka, R
    Johnson, E
    Ekh, M
    [J]. ENGINEERING FRACTURE MECHANICS, 2006, 73 (02) : 223 - 232
  • [9] Propagation of planar crack fronts in heterogeneous brittle materials of finite dimensions
    Patinet, Sylvain
    Frelat, Joel
    Lazarus, Veronique
    Vandembroucq, Damien
    [J]. MECANIQUE & INDUSTRIES, 2011, 12 (03): : 199 - 204
  • [10] Phase-field modeling of crack propagation in heterogeneous materials with multiple crack order parameters
    Schöller, Lukas
    Schneider, Daniel
    Herrmann, Christoph
    Prahs, Andreas
    Nestler, Britta
    [J]. Computer Methods in Applied Mechanics and Engineering, 2022, 395