Python']Python in the NERSC Exascale Science Applications Program for Data

被引:5
|
作者
Ronaghi, Zahra [1 ]
Thomas, Rollin [1 ]
Deslippe, Jack [1 ]
Bailey, Stephen [2 ]
Gursoy, Doga [3 ,4 ]
Kisner, Theodore [5 ,6 ]
Keskitalo, Reijo [5 ,6 ]
Borrill, Julian [5 ,6 ]
机构
[1] Lawrence Berkeley Natl Lab, Natl Energy Res Sci Comp Ctr, Berkeley, CA 94720 USA
[2] Lawrence Berkeley Natl Lab, Phys Div, Berkeley, CA USA
[3] Northwestern Univ, Adv Photon Source, Argonne Natl Lab, Evanston, IL 60208 USA
[4] Northwestern Univ, Dept Elect Engn & Comp Sci, Evanston, IL 60208 USA
[5] Univ Calif Berkeley, Computat Res Div, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA
[6] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA
关键词
MPI;
D O I
10.1145/3149869.3149873
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We describe a new effort at the National Energy Research Scientific Computing Center (NERSC) in performance analysis and optimization of scientific Python applications targeting the Intel Xeon Phi (Knights Landing, KNL) manycore architecture. The Python-centered work outlined here is part of a larger effort called the NERSC Exascale Science Applications Program (NESAP) for Data. NESAP for Data focuses on applications that process and analyze high-volume, high-velocity data sets from experimental or observational science (EOS) facilities supported by the US Department of Energy Office of Science. We present three case study applications from NESAP for Data that use Python. These codes vary in terms of "Python purity" from applications developed in pure Python to ones that use Python mainly as a convenience layer for scientists without expertise in lower level programming languages like C, C++ or Fortran. The science case, requirements, constraints, algorithms, and initial performance optimizations for each code are discussed. Our goal with this paper is to contribute to the larger conversation around the role of Python in high-performance computing today and tomorrow, highlighting areas for future work and emerging best practices.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Applications of Python']Python to evaluate environmental data science problems
    Kadiyala, Akhil
    Kumar, Ashok
    [J]. ENVIRONMENTAL PROGRESS & SUSTAINABLE ENERGY, 2017, 36 (06) : 1580 - 1586
  • [2] Introduction to data science with Python']Python
    Monteiro, M.
    [J]. EUROPEAN JOURNAL OF CLINICAL INVESTIGATION, 2021, 51 : 14 - 14
  • [3] Geographic Data Science With Python']Python
    Podgorski, Krzysztof
    [J]. INTERNATIONAL STATISTICAL REVIEW, 2024, 92 (01) : 134 - 135
  • [4] Numerical Python']Python: Scientific Computing and Data Science Applications with Numpy, SciPy and Matplotlib
    Jekel, Charles
    [J]. SIAM REVIEW, 2020, 62 (02) : 515 - 517
  • [5] Landscape of High-Performance Python']Python to Develop Data Science and Machine Learning Applications
    Castro, Oscar
    Bruneau, Pierrick
    Sottet, Jean-Sebastien
    Torregrossa, Dario
    [J]. ACM COMPUTING SURVEYS, 2024, 56 (03)
  • [6] Python']Python for Data Analytics, Scientific and Technical Applications
    Nagpal, Abhinav
    Gabrani, Goldie
    [J]. PROCEEDINGS 2019 AMITY INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE (AICAI), 2019, : 140 - 145
  • [7] Refrapy: A Python']Python program for seismic refraction data analysis
    Cavalcanti Bezerra Guedes, Victor Jose
    Ramalho Maciel, Susanne Taina
    Rocha, Marcelo Peres
    [J]. COMPUTERS & GEOSCIENCES, 2022, 159
  • [8] Tuplex: Data Science in Python']Python at Native Code Speed
    Spiegelberg, Leonhard
    Yesantharao, Rahul
    Schwarzkopf, Malte
    Kraska, Tim
    [J]. SIGMOD '21: PROCEEDINGS OF THE 2021 INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2021, : 1718 - 1731
  • [9] An Accurate and Fast Computational Python']Python Based Module for Linear Regression Analysis in Data Science Applications
    Vangara, Vikram Koti Mourya
    Vuddanti, Sandeep
    Kakani, Bhaskar
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS, SMART AND GREEN TECHNOLOGIES (ICISSGT 2021), 2021, : 167 - 170
  • [10] kMappy: A Python']Python program for simulation and data analysis in photoemission tomography
    Brandstetter, Dominik
    Yang, Xiaosheng
    Luftner, Daniel
    Tautz, F. Stefan
    Puschnig, Peter
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2021, 263