Two-dimensional conformal models of space-time and their compactification

被引:11
|
作者
Kisil, Vladimir V. [1 ]
机构
[1] Univ Leeds, Sch Math, Leeds LS2 9JT, W Yorkshire, England
关键词
D O I
10.1063/1.2747722
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study geometry of two-dimensional models of conformal space-time based on the group of Mobius transformation. The natural geometric invariants, called cycles, are used to linearize Mobius action. Conformal completion of the space-time is achieved through an addition of a zero-radius cycle at infinity. We pay an attention to the natural condition of nonreversibility of time arrow in order to get a correct compactification in the hyperbolic case.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] FERMION MODELS IN TWO-DIMENSIONAL CURVED SPACE-TIME
    SARAVI, REG
    SCHAPOSNIK, FA
    VUCETICH, H
    [J]. PHYSICAL REVIEW D, 1984, 30 (02): : 363 - 367
  • [2] ON THE INTEGRABILITY OF CLASSICAL SPINOR MODELS IN TWO-DIMENSIONAL SPACE-TIME
    ZAKHAROV, VE
    MIKHAILOV, AV
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1980, 74 (01) : 21 - 40
  • [3] Two-dimensional mixed autoregressive models for space-time adaptive processing
    Abramovich, Yuri I.
    Johnson, Ben A.
    Spencer, Nicholas K.
    [J]. CONFERENCE RECORD OF THE FORTY-FIRST ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, VOLS 1-5, 2007, : 1367 - +
  • [4] (TAB) FOR A TWO-DIMENSIONAL VAIDYA SPACE-TIME
    BALBINOT, R
    BROWN, MR
    [J]. PHYSICS LETTERS A, 1984, 100 (02) : 80 - 81
  • [5] POSITIONING IN A FLAT TWO-DIMENSIONAL SPACE-TIME
    Ferrando, J. J.
    [J]. SPANISH RELATIVITY MEETING, ERE2007: RELATIVISTIC ASTROPHYSICS AND COSMOLOGY, 2008, 30 : 323 - 327
  • [6] A scenario for the dimensional compactification in eleven-dimensional space-time
    Montani, G
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2004, 13 (06): : 1029 - 1036
  • [7] Two-dimensional space-time simmetry in hyperbolic functions
    Catoni, F
    Zampetti, P
    [J]. NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 2000, 115 (12): : 1433 - 1440
  • [8] Hyperbolic trigonometry in two-dimensional space-time geometry
    Catoni, F
    Cannata, R
    Catoni, V
    Zampetti, P
    [J]. NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 2003, 118 (05): : 475 - 492
  • [9] Invariant velocities for two-dimensional Minkowski space-time
    Kapuscik, E
    Wcislo, D
    [J]. CZECHOSLOVAK JOURNAL OF PHYSICS, 2003, 53 (11) : 1057 - 1059
  • [10] THE ZITTERBEWEGUNG OF A DIRAC PARTICLE IN TWO-DIMENSIONAL SPACE-TIME
    ICHINOSE, T
    TAMURA, H
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1988, 29 (01) : 103 - 109