Evolving dynamical networks: A formalism for describing complex systems

被引:30
|
作者
Gorochowski, Thomas E. [1 ]
Di Bernardo, Mario [2 ]
Grierson, Claire S. [3 ]
机构
[1] Univ Bristol, Dept Engn Math, Bristol Ctr Complex Sci, Bristol BS8 1TR, Avon, England
[2] Univ Naples Federico II, Dept Syst & Comp Sci, I-80125 Naples, Italy
[3] Univ Bristol, Sch Biol Sci, Bristol BS8 1UG, Avon, England
基金
英国工程与自然科学研究理事会;
关键词
complex systems; network dynamics; network evolution; CONTINUOUS BOOLEAN NETWORKS; SYNCHRONY; SYMMETRY; PATTERNS; GRAPHS;
D O I
10.1002/cplx.20386
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a comprehensive formalism called an Evolving Dynamical Network (EDN) that aims to provide a common description for many types of complex system in applied science and engineering. We expand the currently available formalisms and define a new modeling framework able to incorporate network topology, dynamics, and evolution in an integrated way. Although the main focus is to provide a common framework, we find that evolving dynamical networks also highlight several interesting implications regarding possible control mechanisms for complex systems. A physical example is used throughout to illustrate the advantages and limitations of the various approaches described in the article. (C) 2011 Wiley Periodicals, Inc. Complexity, 2011
引用
收藏
页码:18 / 25
页数:8
相关论文
共 50 条
  • [1] Artificial Biochemical Networks: Evolving Dynamical Systems to Control Dynamical Systems
    Lones, Michael A.
    Fuente, Luis A.
    Turner, Alexander P.
    Caves, Leo S. D.
    Stepney, Susan
    Smith, Stephen L.
    Tyrrell, Andy M.
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2014, 18 (02) : 145 - 166
  • [2] Evolving enhanced topologies for the synchronization of dynamical complex networks
    Gorochowski, Thomas E.
    di Bernardo, Mario
    Grierson, Claire S.
    [J]. PHYSICAL REVIEW E, 2010, 81 (05)
  • [3] Evolving dynamical networks
    Belykh, Igor
    di Bernardo, Mario
    Kurths, Juergen
    Porfiri, Maurizio
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2014, 267 : 1 - 6
  • [4] A new formalism for describing concurrent systems
    Isazadeh, Ayaz
    Karimpour, Jaber
    Isazadeh, Hosein
    [J]. FRONTIERS OF HIGH PERFORMANCE COMPUTING AND NETWORKING - ISPA 2007 WORKSHOPS, 2007, 4743 : 355 - +
  • [5] Multifractal formalism for expanding rational semigroups and random complex dynamical systems
    Jaerisch, Johannes
    Sumi, Hiroki
    [J]. NONLINEARITY, 2015, 28 (08) : 2913 - 2938
  • [6] Mapping dynamical systems onto complex networks
    Borges, E. P.
    Cajueiro, D. O.
    Andrade, R. F. S.
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2007, 58 (04): : 469 - 474
  • [7] Mapping dynamical systems onto complex networks
    E. P. Borges
    D. O. Cajueiro
    R. F.S. Andrade
    [J]. The European Physical Journal B, 2007, 58 : 469 - 474
  • [8] GFINNs: GENERIC formalism informed neural networks for deterministic and stochastic dynamical systems
    Zhang, Zhen
    Shin, Yeonjong
    Karniadakis, George Em
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2022, 380 (2229):
  • [9] A Quantum Formalism for Abstract Dynamical Systems
    Mico, Joan C.
    [J]. MATHEMATICS, 2024, 12 (07)
  • [10] Projected dynamical systems in a complementarity formalism
    Heemels, WPMH
    Schumacher, JM
    Weiland, S
    [J]. OPERATIONS RESEARCH LETTERS, 2000, 27 (02) : 83 - 91