Techno-economic analysis of combined concentrating solar power and desalination plant configurations in Israel and Jordan

被引:46
|
作者
Olwig, Ralf [2 ,3 ]
Hirsch, Tobias [2 ,3 ]
Sattler, Christian [2 ,3 ]
Glade, Heike [1 ]
Schmeken, Louisa [1 ]
Will, Stefan [1 ]
Ghermandi, Andrea [4 ]
Messalem, Rami [4 ]
机构
[1] Univ Bremen, D-28359 Bremen, Germany
[2] German Aerosp Ctr, Inst Tech Thermodynam, D-51147 Cologne, Germany
[3] German Aerosp Ctr, Inst Tech Thermodynam, D-70569 Stuttgart, Germany
[4] Ben Gurion Univ Negev, Zuckerberg Inst Water Res, IL-84105 Beer Sheva, Israel
关键词
Desalination; Solar energy; Reverse osmosis; Multi-effect distillation; Concentrating solar power; Costs of water; REVERSE-OSMOSIS;
D O I
10.1080/19443994.2012.664674
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Combined concentrating solar power (CSP) and desalination plants represent a realistic future option for the production of electricity and fresh water for countries of the world's sunbelt. In this paper, parabolic trough power plants for electricity production have been analysed in combination with multi-effect distillation (MED) and ultrafiltration/reverse osmosis (RO) desalination plants for two sites in Israel (Ashdod) and Jordan (Aqaba). Both RO and MED desalination plants were designed for a fresh water production capacity of 24,000 m(3)/d. The power block of the CSP plant was selected to meet the steam consumption of the MED plant at the design point, which led to a gross electrical power generation capacity of the power block of 42 MWel,gross. Due to the low availability and generally high cost of coastal land, the CSP + RO plant consists of two separate units. It was assumed that the CSP plant is located at an inland location where there is land available. The RO plant is located at the sea, while the MED plant is located at the CSP site. The pumping of the seawater and the water transmission system add about 0.2 $/m(3) to the levelized water costs of the CSP + MED plant compared with a plant located at the sea. Three different sizes of high temperature heat storages (0h, 6h and 12h of additional full load operation of the steam turbine) were applied to find the most economic setup. At current prices for heat storage units, systems with huge heat storage capacities become economic only at high feed-in tariffs for electricity and thus high revenues. The price of the electricity generated by the CSP plant was varied to show the influence of the feed-in tariff on the water generating costs. The levelized costs of water (LCOW) strongly depend on the electricity price. Water costs in Ashdod are higher than those in Aqaba due to the lower solar irradiance. For Aqaba, LCOW of about 1 $/m(3) can be realized if a feed-in tariff of about 0.24 $/kWh for electricity from renewable energy sources is established.
引用
下载
收藏
页码:9 / 25
页数:17
相关论文
共 50 条
  • [1] Techno-economic analysis of a combined concentrated solar power and water desalination plant
    Moharram, Nour A.
    Bayoumi, Seif
    Hanafy, Ahmed A.
    El-Maghlany, Wael M.
    ENERGY CONVERSION AND MANAGEMENT, 2021, 228
  • [2] Techno-Economic Assessment of Concentrating Solar Power and Wind Hybridization in Jordan
    Ayadi, Osama
    Alsalhen, Ishraq A.
    JOURNAL OF ECOLOGICAL ENGINEERING, 2018, 19 (02): : 16 - 23
  • [3] Techno-Economic Analysis of a Concentrated Solar Polygeneration Plant in Jordan
    Kiwan, S.
    Venezia, L.
    Montagnino, F. M.
    Paredes, F.
    Damseh, R.
    JORDAN JOURNAL OF MECHANICAL AND INDUSTRIAL ENGINEERING, 2018, 12 (01): : 1 - 6
  • [4] Techno-economic analysis of a hybrid solar-geothermal power plant integrated with a desalination system
    Aviles, Daniel
    Sabri, Farhad
    Hooman, Kamel
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2021, 45 (12) : 17955 - 17970
  • [5] Hydrothermal liquefaction of wood wastes in a concentrating solar plant: A techno-economic analysis
    Bautista-Penuesla, Eduardo
    Macias, Juan Daniel
    Villafan-Vidales, Heidi I.
    Valades-Pelayo, Patricio J.
    Arcelus-Arrillaga, Pedro
    Ayala-Cortes, Alejandro
    Cedano-Villavicencio, Karla
    Arancibia-Bulnes, Camilo A.
    Pena-Cruz, Manuel I.
    ENERGY CONVERSION AND MANAGEMENT, 2023, 282
  • [6] Techno-Economic Evaluation of a Concentrating Solar Power Plant Driven by an Organic Rankine Cycle
    El Hamdani, Fayrouz
    Vaudreuil, Sebastien
    Abderafi, Souad
    Bounahmidi, Tijani
    JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME, 2020, 142 (06):
  • [7] Techno-economic evaluation of concentrating solar power generation in India
    Purohit, Ishan
    Purohit, Pallav
    ENERGY POLICY, 2010, 38 (06) : 3015 - 3029
  • [8] Techno-economic evaluation of a solar powered water desalination plant
    Fiorenza, G
    Sharma, VK
    Braccio, G
    ENERGY CONVERSION AND MANAGEMENT, 2003, 44 (14) : 2217 - 2240
  • [9] Techno-economic evaluation of a solar powered water desalination plant
    Fiorenza, Giseppe
    Sharma, V. K.
    Braccio, Giacobbe
    SOLAR DESALINATION FOR THE 21ST CENTURY: A REVIEW OF MODERN TECHNOLOGIES AND RESEARCHES ON DESALINATION COUPLED TO RENEWABLE ENERGIES, 2007, : 33 - +
  • [10] Current energy mix and techno-economic analysis of concentrating solar power (CSP) technologies
    Huda, Nazmul
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258